Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4375, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821947

ABSTRACT

The conservation and restoration of forest ecosystems require detailed knowledge of the native plant compositions. Here, we map global forest tree composition and assess the impacts of historical forest cover loss and climate change on trees. The global occupancy of 10,590 tree species reveals complex taxonomic and phylogenetic gradients determining a local signature of tree lineage assembly. Species occupancy analyses indicate that historical forest loss has significantly restricted the potential suitable range of tree species in all forest biomes. Nevertheless, tropical moist and boreal forest biomes display the lowest level of range restriction and harbor extremely large ranged tree species, albeit with a stark contrast in richness and composition. Climate change simulations indicate that forest biomes are projected to differ in their response to climate change, with the highest predicted species loss in tropical dry and Mediterranean ecoregions. Our findings highlight the need for preserving the remaining large forest biomes while regenerating degraded forests in a way that provides resilience against climate change.


Subject(s)
Biodiversity , Climate Change , Forests , Phylogeny , Trees , Conservation of Natural Resources , Ecosystem , Species Specificity
2.
Sci Data ; 11(1): 21, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172116

ABSTRACT

Standard and easily accessible cross-thematic spatial databases are key resources in ecological research. In Switzerland, as in many other countries, available data are scattered across computer servers of research institutions and are rarely provided in standard formats (e.g., different extents or projections systems, inconsistent naming conventions). Consequently, their joint use can require heavy data management and geomatic operations. Here, we introduce SWECO25, a Swiss-wide raster database at 25-meter resolution gathering 5,265 layers. The 10 environmental categories included in SWECO25 are: geologic, topographic, bioclimatic, hydrologic, edaphic, land use and cover, population, transportation, vegetation, and remote sensing. SWECO25 layers were standardized to a common grid sharing the same resolution, extent, and geographic coordinate system. SWECO25 includes the standardized source data and newly calculated layers, such as those obtained by computing focal or distance statistics. SWECO25 layers were validated by a data integrity check, and we verified that the standardization procedure had a negligible effect on the output values. SWECO25 is available on Zenodo and is intended to be updated and extended regularly.

3.
Oecologia ; 202(4): 699-713, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558733

ABSTRACT

Monitoring of terrestrial and aquatic species assemblages at large spatial scales based on environmental DNA (eDNA) has the potential to enable evidence-based environmental policymaking. The spatial coverage of eDNA-based studies varies substantially, and the ability of eDNA metabarcoding to capture regional biodiversity remains to be assessed; thus, questions about best practices in the sampling design of entire landscapes remain open. We tested the extent to which eDNA sampling can capture the diversity of a region with highly heterogeneous habitat patches across a wide elevation gradient for five days through multiple hydrological catchments of the Swiss Alps. Using peristaltic pumps, we filtered 60 L of water at five sites per catchment for a total volume of 1800 L. Using an eDNA metabarcoding approach focusing on vertebrates and plants, we detected 86 vertebrate taxa spanning 41 families and 263 plant taxa spanning 79 families across ten catchments. For mammals, fishes, amphibians and plants, the detected taxa covered some of the most common species in the region according to long-term records while including a few more rare taxa. We found marked turnover among samples from distinct elevational classes indicating that the biological signal in alpine rivers remains relatively localised and is not aggregated downstream. Accordingly, species compositions differed between catchments and correlated with catchment-level forest and grassland cover. Biomonitoring schemes based on capturing eDNA across rivers within biologically integrated catchments may pave the way toward a spatially comprehensive estimation of biodiversity.


Subject(s)
DNA, Environmental , Animals , Environmental Monitoring , DNA Barcoding, Taxonomic , Biodiversity , Vertebrates/genetics , Ecosystem , Fishes/genetics , Mammals/genetics
4.
New Phytol ; 235(2): 759-772, 2022 07.
Article in English | MEDLINE | ID: mdl-35429166

ABSTRACT

The documentation of biodiversity distribution through species range identification is crucial for macroecology, biogeography, conservation, and restoration. However, for plants, species range maps remain scarce and often inaccurate. We present a novel approach to map species ranges at a global scale, integrating polygon mapping and species distribution modelling (SDM). We develop a polygon mapping algorithm by considering distances and nestedness of occurrences. We further apply an SDM approach considering multiple modelling algorithms, complexity levels, and pseudo-absence selections to map the species at a high spatial resolution and intersect it with the generated polygons. We use this approach to construct range maps for all 1957 species of Fagales and Pinales with data compilated from multiple sources. We construct high-resolution global species richness maps of these important plant clades, and document diversity hotspots for both clades in southern and south-western China, Central America, and Borneo. We validate the approach with two representative genera, Quercus and Pinus, using previously published coarser range maps, and find good agreement. By efficiently producing high-resolution range maps, our mapping approach offers a new tool in the field of macroecology for studying global species distribution patterns and supporting ongoing conservation efforts.


Subject(s)
Fagales , Pinales , Biodiversity , China , Conservation of Natural Resources , Plants
5.
PLoS Biol ; 19(7): e3001340, 2021 07.
Article in English | MEDLINE | ID: mdl-34252071

ABSTRACT

Understanding the origins of biodiversity has been an aspiration since the days of early naturalists. The immense complexity of ecological, evolutionary, and spatial processes, however, has made this goal elusive to this day. Computer models serve progress in many scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models are comparatively less developed. We present a general, spatially explicit, eco-evolutionary engine with a modular implementation that enables the modeling of multiple macroecological and macroevolutionary processes and feedbacks across representative spatiotemporally dynamic landscapes. Modeled processes can include species' abiotic tolerances, biotic interactions, dispersal, speciation, and evolution of ecological traits. Commonly observed biodiversity patterns, such as α, ß, and γ diversity, species ranges, ecological traits, and phylogenies, emerge as simulations proceed. As an illustration, we examine alternative hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth's Cenozoic era. Our exploratory simulations simultaneously produce multiple realistic biodiversity patterns, such as the LDG, current species richness, and range size frequencies, as well as phylogenetic metrics. The model engine is open source and available as an R package, enabling future exploration of various landscapes and biological processes, while outputs can be linked with a variety of empirical biodiversity patterns. This work represents a key toward a numeric, interdisciplinary, and mechanistic understanding of the physical and biological processes that shape Earth's biodiversity.


Subject(s)
Biological Evolution , Computer Simulation , Earth, Planet , Biodiversity , Ecology , Empirical Research , Genetic Speciation
SELECTION OF CITATIONS
SEARCH DETAIL
...