Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 91(8): 083104, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32872970

ABSTRACT

Ion Doppler Spectroscopy (IDS) is a diagnostic technique that measures plasma ion temperature and velocity without perturbing the plasma with a physical probe. The ZaP-HD Flow Z-Pinch Experiment at the University of Washington uses this technique to resolve radial temperature and velocity profiles of a Z-pinch plasma. The pinch lifetime is ∼100 µs; therefore, diagnostics capable of sub-microsecond resolution are required to measure the evolution of temperature and velocity profiles. The previous IDS diagnostic system was only capable of collecting a single measurement during a plasma pulse. An improved system has been developed to measure the radially resolved ion temperature and velocity for the entire Z-pinch lifetime. A Kirana 05M ultra-fast framing camera and Specialized Imaging lens ultraviolet intensifier are used to record up to 100 spectra per plasma pulse. The temperature is computed from Doppler broadening of the carbon-III (229.687 nm) impurity ion radiation, and the velocity is computed from the Doppler shift of carbon-III. Measurements are able to resolve the evolution of the ion temperature and velocity over the course of a plasma pulse. The diagnostic has significantly reduced the number of pulses required and provides a more coherent measurement of plasma dynamics than the previous system.

2.
Phys Rev Lett ; 122(13): 135001, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-31012637

ABSTRACT

The sheared-flow stabilized Z pinch has demonstrated long-lived plasmas with fusion-relevant parameters. We present the first experimental results demonstrating sustained, quasi-steady-state neutron production from the fusion Z-pinch experiment, operated with a mixture of 20% deuterium/80% hydrogen by pressure. Neutron emissions lasting approximately 5 µs are reproducibly observed with pinch currents of approximately 200 kA during an approximately 16 µs period of plasma quiescence. The average neutron yield is estimated to be (1.25±0.45)×10^{5} neutrons/pulse and scales with the square of the deuterium concentration. Coincident with the neutron signal, plasma temperatures of 1-2 keV and densities of approximately 10^{17} cm^{-3} with 0.3 cm pinch radii are measured with fully integrated diagnostics.

3.
Water Sci Technol ; 64(1): 22-8, 2011.
Article in English | MEDLINE | ID: mdl-22053453

ABSTRACT

Constructed wetlands (CWs) have been used to treat agricultural effluents with varying success especially with respect to their operational efficiency in winter and ability to retain phosphorus. Dirty water (DW) from dairy farms is a mixture of manure contaminated runoff and milk parlour washings with a highly polluting biochemical oxygen demand (BOD) < or =3000 mg/L. The initial performance a CW of a 1.2 ha horizontal flow CW consisting of five ponds in series designed to treat DW from a dairy unit was assessed over four years. Ponds were earth-lined and shallow (0.3 m) with a water residence time of 100 days and planted with five species of emergent macrophytes. In comparison to CW inflow, annual reductions were as follows: BOD 99%, P 95% and N 92.8%. Coliforms were reduced by a 10(-5) factor to natural levels. From May to October there was little CW discharge due to evaporative losses. Final effluent quality was poorest in February but remained within a regulatory effluent standard for BOD of 40 mg/L. If the CW had only four ponds (25% less surface area) effluent would have failed the BOD standard in three years.


Subject(s)
Dairying , Waste Disposal, Fluid/methods , Water Pollution, Chemical/analysis , Biological Oxygen Demand Analysis/standards , Enterobacteriaceae/isolation & purification , Northern Ireland , Phosphorus/analysis , Ponds/microbiology , Quaternary Ammonium Compounds/analysis , Seasons , Wetlands
4.
FEBS Lett ; 351(3): 433-6, 1994 Sep 12.
Article in English | MEDLINE | ID: mdl-8082810

ABSTRACT

Tyrosine-rich acidic matrix protein (TRAMP; 22 kDa extracellular matrix protein; dermatopontin) is a protein that co-purifies with lysyl oxidase and with dermatan sulphate proteoglycans, with possible functions in cell-matrix interactions and matrix assembly. Using a rabbit polyclonal antiserum raised against porcine TRAMP, which cross-reacts with both the human and murine forms of the protein, we show by immunoblotting that TRAMP has a widespread tissue distribution, including skin, skeletal muscle, heart, lung, kidney, cartilage and bone. In cultures of human skin fibroblasts, TRAMP incorporates both [35S]sulphate and [3H]tyrosine and is secreted into the medium, as shown by immunoprecipitation. Amino acid analysis of immunoprecipitated TRAMP demonstrates that many of the tyrosine residues in TRAMP are sulphated.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Extracellular Matrix Proteins/metabolism , Tyrosine/metabolism , Animals , Blotting, Western , Cells, Cultured , Chondroitin Sulfate Proteoglycans/biosynthesis , Chromatography, High Pressure Liquid , Cross Reactions , Electrophoresis, Polyacrylamide Gel , Extracellular Matrix Proteins/biosynthesis , Humans , Mice , Mice, Inbred C57BL , Precipitin Tests , Sulfuric Acids/metabolism , Swine
10.
SELECTION OF CITATIONS
SEARCH DETAIL
...