Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Space Sci Rev ; 219(5): 41, 2023.
Article in English | MEDLINE | ID: mdl-37469439

ABSTRACT

The two-year prime mission of the NASA Ionospheric Connection Explorer (ICON) is complete. The baseline operational and scientific objectives have been met and exceeded, as detailed in this report. In October of 2019, ICON was launched into an orbit that provides its instruments the capability to deliver near-continuous measurements of the densest plasma in Earth's space environment. Through collection of a key set of in-situ and remote sensing measurements that are, by virtue of a detailed mission design, uniquely synergistic, ICON enables completely new investigations of the mechanisms that control the behavior of the ionosphere-thermosphere system under both geomagnetically quiet and active conditions. In a two-year period that included a deep solar minimum, ICON has elucidated a number of remarkable effects in the ionosphere attributable to energetic inputs from the lower and middle atmosphere, and shown how these are transmitted from the edge of space to the peak of plasma density above. The observatory operated in a period of low activity for 2 years and then for a year with increasing solar activity, observing the changing balance of the impacts of lower and upper atmospheric drivers on the ionosphere.

2.
Nat Commun ; 13(1): 7544, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36476614

ABSTRACT

Second harmonic generation is the lowest-order wave-wave nonlinear interaction occurring in, e.g., optical, radio, and magnetohydrodynamic systems. As a prototype behavior of waves, second harmonic generation is used broadly, e.g., for doubling Laser frequency. Second harmonic generation of Rossby waves has long been believed to be a mechanism of high-frequency Rossby wave generation via cascade from low-frequency waves. Here, we report the observation of a Rossby wave second harmonic generation event in the atmosphere. We diagnose signatures of two transient waves at periods of 16 and 8 days in the terrestrial middle atmosphere, using meteor-radar wind observations over the European and Asian sectors during winter 2018-2019. Their temporal evolution, frequency and wavenumber relations, and phase couplings revealed by bicoherence and biphase analyses demonstrate that the 16-day signature is an atmospheric manifestation of a Rossby wave normal mode, and its second harmonic generation gives rise to the 8-day signature. Our finding confirms the theoretically-anticipated Rossby wave nonlinearity.

3.
Geophys Res Lett ; 49(11): e2022GL098078, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35865010

ABSTRACT

We present simultaneous, independent measurements of the atmospheric semidiurnal lunar tide in neutral winds and plasma velocities from NASA's Ionospheric Connection Explorer, and in atomic oxygen 135.6 nm airglow measured by the Global-scale Observations of the Limb and Disk. Westward tidal winds near 115 km at the magnetic equator occur during part of the upward phase of the in-situ plasma drift. Vertical motions associated with the field-aligned plasma velocity occur away from the magnetic equator. The morphology of the lunar tide, and the phasing between the airglow and plasma velocities are consistent with E × B drift as a mechanism for linking neutral wind and plasma perturbations. This work provides the first observational quantification of global-scale E- and F-region coupling through E × B and field-aligned vertical drifts.

4.
J Geophys Res Space Phys ; 126(6)2021 Jun.
Article in English | MEDLINE | ID: mdl-34650898

ABSTRACT

Coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and total ion densities (:=Ne, electron density) are analyzed during January 1-21, 2020 to reveal the relationship between neutral winds and ionospheric variability on a day-to-day basis. Atmosphere-ionosphere (A-I) connectivity inevitably involves a spectrum of planetary waves (PWs), tides and secondary waves due to wave-wave nonlinear interactions. To provide a definitive attribution of dynamical origins, the current study focuses on a time interval when the longitudinal wave-4 component of the E-region winds is dominated by the eastward-propagating diurnal tide with zonal wavenumber s = -3 (DE3). DE3 is identified in winds and ionospheric parameters through its characteristic dependence on local solar time and longitude as ICON's orbit precesses. Superimposed on this trend are large variations in low-latitude DE3 wave-4 zonal winds (±40 ms-1) and topside F-region equatorial vertical drifts at periods consistent with 2-days and 6-days PWs, and a ~3-day ultra-fast Kelvin wave (UFKW), coexisting during this time interval; the DE3 winds, dynamo electric fields, and drifts are modulated by these waves. Wave-4 variability in Ne is of order 25%-35%, but the origins are more complex, likely additionally reflecting transport by ~20-25 ms-1 wave-4 in-situ winds containing strong signatures of DE3 interactions with ambient diurnal Sun-synchronous winds and ion drag. These results are the first to show a direct link between day-to-day wave-4 variability in contemporaneously measured E-region neutral winds and F-region ionospheric drifts and electron densities.

5.
Nat Geosci ; 14: 893-898, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003329

ABSTRACT

Earth's equatorial ionosphere exhibits substantial and unpredictable day-to-day variations in density and morphology. This presents challenges in preparing for adverse impacts on geopositioning systems and radio communications even 24 hours in advance. The variability is now theoretically understood as a manifestation of thermospheric weather, where winds in the upper atmosphere respond strongly to a spectrum of atmospheric waves that propagate into space from the lower and middle atmosphere. First-principles simulations predict related, large changes in the ionosphere, primarily through modification of wind-driven electromotive forces: the wind-driven dynamo. Here we show the first direct evidence of the action of a wind dynamo in space, using the coordinated, space-based observations of winds and plasma motion made by the National Aeronautics and Space Administration Ionospheric Connection Explorer. A clear relationship is found between vertical plasma velocities measured at the magnetic equator near 600 km and the thermospheric winds much farther below. Significant correlations are found between the plasma and wind velocities during several successive precession cycles of the Ionospheric Connection Explorer's orbit. Prediction of thermospheric winds in the 100-150 km altitude range emerges as the key to improved prediction of Earth's plasma environment.

6.
J Geophys Res Space Phys ; 126(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-35070616

ABSTRACT

A quasi-2-day wave (Q2DW) event during January-February, 2020, is investigated in terms of its propagation from 96 to 250 km as a function of latitude (10°S to 30°N), its nonlinear interactions with migrating tides to produce 16 and 9.6-h secondary waves (SWs), and the plasma drift and density perturbations that it produces in the topside F-region (590-607 km) between magnetic latitudes 18°S and 18°N. This is accomplished through analysis of coincident Ionospheric Connections Explorer (ICON) measurements of neutral winds, plasma drifts and ion densities, and wind measurements from four low-latitude (±15°) specular meteor radars (SMRs). The Q2DW westward-propagating components that existed during this period consist of zonal wavenumbers s = 2 and s = 3, that is, Q2DW+2 and Q2DW+3 (e.g., He, Chau et al., 2021, https://doi.org/10.1029/93jd00380). SWs in the ICON measurements are inferred from Q2DW+2 and Q2DW+3 characteristics derived from traditional longitude-UT fits that potentially contain aliasing contributions from SWs ("apparent" Q2DWs), from fits to space-based zonal wavenumbers that each reflect the aggregate signature of either Q2DW+2 or Q2DW+3 and its SWs combined ("effective" Q2DWs), and based on information contained in published numerical simulations. The total Q2DW ionospheric responses consists of F-region field-aligned and meridional drifts of order ±25 ms-1 and ±5-7 ms-1, respectively, and total ion density perturbations of order (±10%-25%). It is shown that the SWs can sometimes make substantial contributions to the Q2DW winds, drifts, and plasma densities.

7.
Prog Earth Planet Sci ; 7(1): 18, 2020.
Article in English | MEDLINE | ID: mdl-32626648

ABSTRACT

Retrieval of the properties of the middle and upper atmosphere can be performed using several different interferometric and photometric methods. The emission-shape and Doppler shift of both atomic and molecular emissions can be observed from the ground and space to provide temperature and bulk velocity. These instantaneous measurements can be combined over successive times/locations along an orbit track, or successive universal/local times from a ground station to quantify the motion and temperature of the atmosphere needed to identify atmospheric tides. In this report, we explore how different combinations of space-based wind and temperature measurements affect the retrieval of atmospheric tides, a ubiquitous property of planetary atmospheres. We explore several scenarios informed by the use of a tidally forced atmospheric circulation model, an empirically based emissions reference, and a low-earth orbit satellite observation geometry based on the ICON mission design. This capability provides a necessary tool for design of an optimal mission concept for retrieval of atmospheric tides from ICON remote-sensing observations. Here it is used to investigate scenarios of limited data availability and the effects of rapid changes in the total wave spectrum on the retrieval of the correct tidal spectrum. An approach such as that described here could be used in the design of future missions, such as the NASA DYNAMIC mission (National Research Council, Solar and space physics: a science for a technological society, 2013).

8.
J Geophys Res Space Phys ; 126(2)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33796432

ABSTRACT

Longitudinal structures in the Martian thermosphere and topside ionosphere between 150 and 200 km altitudes are studied using in situ electron and neutral measurements from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Four time intervals are selected for comparison, during which MAVEN sampled similar local time (9.3-10.3 h) and latitude (near 20°S) regions but at different solar longitude positions (two near northern summer solstice, one each at northern vernal and autumnal equinoxes). Persistent and pronounced tidal oscillations characterize the ionosphere and thermosphere, whose longitudinal variations in density are generally in-phase with each other. Our analysis of simultaneous and collocated neutral and electron data provides direct observational evidence for thermosphere-ionosphere coupling through atmospheric tides. We conclude that the ionosphere is subject to modulation by upward-propagating thermal tides, via both tide-induced vertical displacement and photochemical reactions. Atmospheric tides constitute a ubiquitous and significant perturbation source to the ionospheric electron density, up to ~15% near 200 km.

9.
Space Sci Rev ; 212(1-2): 697-713, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30093735

ABSTRACT

The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) will provide a physics-based context for the interpretation of ICON measurements. To optimize the realism of the model simulations, ICON wind and temperature measurements near the ~97 km lower boundary of the TIEGCM will be used to specify the upward-propagating tidal spectrum at this altitude. This will be done by fitting a set of basis functions called Hough Mode Extensions (HMEs) to 27-day mean tidal winds and temperatures between 90 and 105 km altitude and between 12°S and 42°N latitude on a day-by-day basis. The current paper assesses the veracity of the HME fitting methodology given the restricted latitude sampling and the UT-longitude sampling afforded by the MIGHTI instrument viewing from the ICON satellite, which will be in a circular 27° inclination orbit. These issues are investigated using the output from a reanalysis-driven global circulation model, which contains realistic variability of the important tidal components, as a mock data set. ICON sampling of the model reveals that the 27-day mean diurnal and semidiurnal tidal components replicate well the 27-day mean tidal components obtained from full synoptic sampling of the model, but the terdiurnal tidal components are not faithfully reproduced. It is also demonstrated that reconstructed tidal components based on HME fitting to the model tides between 12°S and 42°N latitude provide good approximations to the major tidal components expected to be encountered during the ICON mission. This is because the constraints provided by fitting both winds and temperatures over the 90-105 km height range are adequate to offset the restricted sampling in latitude. The boundary conditions provided by the methodology described herein will greatly enhance the ability of the TIEGCM to provide a physical framework for interpreting atmosphere-ionosphere coupling in ICON observations due to atmospheric tides.

10.
Science ; 312(5778): 1366-8, 2006 Jun 02.
Article in English | MEDLINE | ID: mdl-16741117

ABSTRACT

The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

SELECTION OF CITATIONS
SEARCH DETAIL
...