Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nutrition ; 110: 111980, 2023 06.
Article in English | MEDLINE | ID: mdl-36965240

ABSTRACT

Patients with inflammatory bowel disease (IBD) are at substantially high risk for colorectal cancer (CRC). IBD-associated CRC accounts for roughly 10% to 15% of the annual mortality in patients with IBD. IBD-related CRC also affects younger patients compared with sporadic CRC, with a 5-y survival rate of 50%. Regardless of medical therapies, the persistent inflammatory state characterizing IBD raises the risk for precancerous changes and CRC, with additional input from several elements, including genetic and environmental risk factors, IBD-associated comorbidities, intestinal barrier dysfunction, and gut microbiota modifications. It is well known that nutritional habits and dietary bioactive compounds can influence IBD-associated inflammation, microbiome abundance and composition, oxidative stress balance, and gut permeability. Additionally, in recent years, results from broad epidemiologic and experimental studies have associated certain foods or nutritional patterns with the risk for colorectal neoplasia. The present study aimed to review the possible role of nutrition in preventing IBD-related CRC, focusing specifically on human studies. It emerges that nutritional interventions based on healthy, nutrient-dense dietary patterns characterized by a high intake of fiber, vegetables, fruit, ω-3 polyunsaturated fatty acids, and a low amount of animal proteins, processed foods, and alcohol, combined with probiotic supplementation have the potential of reducing IBD-activity and preventing the risk of IBD-related CRC through different mechanisms, suggesting that targeted nutritional interventions may represent a novel promising approach for the prevention and management of IBD-associated CRC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Humans , Risk Factors , Inflammatory Bowel Diseases/complications , Colorectal Neoplasms/prevention & control , Colorectal Neoplasms/complications , Nutritional Status
2.
J Agric Food Chem ; 70(23): 6833-6848, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-34974697

ABSTRACT

Beside honey, honeybees (Apis mellifera L.) are able to produce many byproducts, including bee pollen, propolis, bee bread, royal jelly, and beeswax. Even if the medicinal properties of these byproducts have been recognized for thousands of years by the ancient civilizations, in the modern era, they have a limited use, essentially as nutritional supplements or health products. However, these natural products are excellent sources of bioactive compounds, macro- and micronutrients, that, in a synergistic way, confer multiple biological activities to these byproducts, such as, for example, antimicrobial, antioxidant, and anti-inflammatory properties. This work aims to update the chemical and phytochemical composition of bee pollen, propolis, bee bread, royal jelly, and beeswax and to summarize the main effects exerted by these byproducts on human health, from the anticancer and immune-modulatory activities to the antidiabetic, hypolipidemic, hypotensive, and anti-allergic properties.


Subject(s)
Anti-Infective Agents , Honey , Propolis , Animals , Anti-Infective Agents/analysis , Antioxidants/analysis , Honey/analysis , Pollen/chemistry , Propolis/chemistry
3.
J Food Biochem ; 45(4): e13637, 2021 04.
Article in English | MEDLINE | ID: mdl-33547659

ABSTRACT

Increased levels of oxidative stress and oxidative DNA damage are common features in the pathology of Alzheimer's disease (AD) found in neurons and peripheral cells like peripheral blood lymphocytes (PBL). Natural products such as strawberry cultivar Alba are an important source of bioactive nutrients that could help in lowering both the oxidative stress and DNA damage levels. The objective was to estimate the effects of Alba extract on DNA damage in peripheral blood lymphocytes of sporadic AD (aged 60-84 years) patients, and healthy elderly (aged 69-83 years) and young (aged 21-30 years) individuals in in vitro conditions. Comet assay was used as a sensitive technique for the evaluation of PBL DNA damage levels. Reduction of basal DNA damage level in PBL was shown in the young group after the incubation with Alba extract ranging from 25 to 200 µg/ml, with 100 µg/ml being the most effective concentration. Selected Alba extract of 100 µg/ml was further used for PBL treatment of AD and healthy elderly age matched group, displaying potential to significantly attenuate DNA damage levels in both groups (p < .05). Alba extract displayed biological activity against oxidative DNA damage, suggesting that its functional ingredients may have beneficial health effects. PRACTICAL APPLICATIONS: The data obtained in this preliminary study displayed that strawberry Alba extract is efficient against DNA damage induced by endogenous and exogenous oxidative stress in peripheral blood lymphocytes of Alzheimer`s disease in vitro. An active area of future research of Alba cultivar should be to determine the trials in in vivo systems. Our findings also suggest that Alba cultivar's functional ingredients potentially may have beneficial health effects in AD.


Subject(s)
Alzheimer Disease , Fragaria , Aged , Alzheimer Disease/drug therapy , DNA Damage , Humans , Lymphocytes , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
Semin Cancer Biol ; 73: 45-57, 2021 08.
Article in English | MEDLINE | ID: mdl-33271317

ABSTRACT

Fasting, caloric restriction and foods or compounds mimicking the biological effects of caloric restriction, known as caloric restriction mimetics, have been associated with a lower risk of age-related diseases, including cardiovascular diseases, cancer and cognitive decline, and a longer lifespan. Reduced calorie intake has been shown to stimulate cancer immunosurveillance, reducing the migration of immunosuppressive regulatory T cells towards the tumor bulk. Autophagy stimulation via reduction of lysine acetylation, increased sensitivity to chemo- and immunotherapy, along with a reduction of insulin-like growth factor 1 and reactive oxygen species have been described as some of the major effects triggered by caloric restriction. Fasting and caloric restriction have also been shown to beneficially influence gut microbiota composition, modify host metabolism, reduce total cholesterol and triglyceride levels, lower diastolic blood pressure and elevate morning cortisol level, with beneficial modulatory effects on cardiopulmonary fitness, body fat and weight, fatigue and weakness, and general quality of life. Moreover, caloric restriction may reduce the carcinogenic and metastatic potential of cancer stem cells, which are generally considered responsible of tumor formation and relapse. Here, we reviewed in vitro and in vivo studies describing the effects of fasting, caloric restriction and some caloric restriction mimetics on immunosurveillance, gut microbiota, metabolism, and cancer stem cell growth, highlighting the molecular and cellular mechanisms underlying these effects. Additionally, studies on caloric restriction interventions in cancer patients or cancer risk subjects are discussed. Considering the promising effects associated with caloric restriction and caloric restriction mimetics, we think that controlled-randomized large clinical trials are warranted to evaluate the inclusion of these non-pharmacological approaches in clinical practice.


Subject(s)
Caloric Restriction/methods , Gastrointestinal Microbiome/physiology , Immunologic Surveillance/physiology , Neoplasms , Animals , Humans , Phenotype
5.
Food Res Int ; 137: 109623, 2020 11.
Article in English | MEDLINE | ID: mdl-33233211

ABSTRACT

HER2-positive breast cancer is one of the most aggressive subtypes accounting for nearly 30% of diagnosed cases. It is associated with reduced disease-free survival, tumor invasiveness, and a poor overall prognosis. Unfortunately, numerous patients develop resistance to conventional therapies; therefore, many ongoing clinical trials are testing new possible treatments. Polyphenols are the main bioactive components of the Mediterranean diet with multiple beneficial properties playing a key role in cancer prevention through epigenetic regulation. Aberrant variations in microRNAs levels regulating oncogenes or tumor suppressor genes expression may lead to tumor development. Evidence has shown that dietary polyphenols modulate HER2-positive breast cancer-associated microRNAs, resulting in a reduction of tumor growth and metastatic potential, and chemosensitivity restoration without displaying toxicity-derived adverse effects. These beneficial properties make polyphenols a potential therapeutic approach for HER2-positive breast cancer patients in the clinical setting, alone or in combination with conventional therapies.


Subject(s)
Breast Neoplasms , MicroRNAs , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Epigenesis, Genetic , Epigenomics , Humans , MicroRNAs/genetics , Polyphenols/pharmacology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
6.
Antioxidants (Basel) ; 9(7)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679751

ABSTRACT

Garlic is a polyphenolic and organosulfur enriched nutraceutical spice consumed since ancient times. Garlic and its secondary metabolites have shown excellent health-promoting and disease-preventing effects on many human common diseases, such as cancer, cardiovascular and metabolic disorders, blood pressure, and diabetes, through its antioxidant, anti-inflammatory, and lipid-lowering properties, as demonstrated in several in vitro, in vivo, and clinical studies. The present review aims to provide a comprehensive overview on the consumption of garlic, garlic preparation, garlic extract, and garlic extract-derived bioactive constituents on oxidative stress, inflammation, cancer, cardiovascular and metabolic disorders, skin, bone, and other common diseases. Among the 83 human interventional trials considered, the consumption of garlic has been reported to modulate multiple biomarkers of different diseases; in addition, its combination with drugs or other food matrices has been shown to be safe and to prolong their therapeutic effects. The rapid metabolism and poor bioavailability that have limited the therapeutic use of garlic in the last years are also discussed.

7.
Nutrients ; 12(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575399

ABSTRACT

The interaction between nutrition and human infectious diseases has always been recognized. With the emergence of molecular tools and post-genomics, high-resolution sequencing technologies, the gut microbiota has been emerging as a key moderator in the complex interplay between nutrients, human body, and infections. Much of the host-microbial and nutrition research is currently based on animals or simplistic in vitro models. Although traditional in vivo and in vitro models have helped to develop mechanistic hypotheses and assess the causality of the host-microbiota interactions, they often fail to faithfully recapitulate the complexity of the human nutrient-microbiome axis in gastrointestinal homeostasis and infections. Over the last decade, remarkable progress in tissue engineering, stem cell biology, microfluidics, sequencing technologies, and computing power has taken place, which has produced a new generation of human-focused, relevant, and predictive tools. These tools, which include patient-derived organoids, organs-on-a-chip, computational analyses, and models, together with multi-omics readouts, represent novel and exciting equipment to advance the research into microbiota, infectious diseases, and nutrition from a human-biology-based perspective. After considering some limitations of the conventional in vivo and in vitro approaches, in this review, we present the main novel available and emerging tools that are suitable for designing human-oriented research.


Subject(s)
Biomedical Research/methods , Communicable Disease Control/methods , Gastrointestinal Microbiome/physiology , Nutritional Physiological Phenomena/physiology , Nutritional Status/physiology , Technology/methods , Communicable Diseases , Humans
8.
Antioxidants (Basel) ; 9(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936782

ABSTRACT

: Manuka honey (MH) is a natural food with many beneficial properties to human health, thanks to its high variety of bioactive compounds; however, little is known about its bioaccessibility. The aim of this study was to evaluate and compare the polyphenol compounds, the antioxidant capacity and the anticancer activity of MH subjected to an in vitro gastrointestinal digestion in human HCT-116 colon cancer cells. Raw MH and digested MH (DMH) were assessed for total polyphenols and flavonoids by spectrophotometric and HPLC-ESI-MS/MS analysis, and total antioxidant capacity (TAC) using different methods. Cell viability, intracellular ROS production, apoptosis, cell cycle and colony formation capacity were tested after treatment with MH or DMH. Results showed that total polyphenols, total flavonoids and TAC were significantly (p < 0.05) reduced after in vitro digestion. In addition, MH and DMH at 8, 16 and 24 mg/mL had similar effects in inducing intracellular ROS production and in inhibiting the colon formation ability; MH induced a more marked apoptosis compared to DMH, while cell cycle was blocked in S phase by MH and in Sub G1 phase by DMH. Our results increase knowledge of the effect of gastrointestinal digestion on the biological effect of honey against colorectal cancer.

9.
Pharmacol Res ; 152: 104579, 2020 02.
Article in English | MEDLINE | ID: mdl-31790820

ABSTRACT

In the last decade, the prevalence of autism spectrum disorders (ASD) has dramatically escalated worldwide. Currently available drugs mainly target some co-occurring symptoms of ASD, but are not effective on the core symptoms, namely impairments in communication and social interaction, and the presence of restricted and repetitive behaviors. On the other hand, transplantation of hematopoietic and mesenchymal stem cells in ASD children has been shown promising to stimulate the recruitment, proliferation, and differentiation of tissue-residing native stem cells, reducing inflammation, and improving some ASD symptoms. Moreover, several comorbidities have also been associated with ASD, such as immune dysregulation, gastrointestinal issues and gut microbiota dysbiosis. Non-pharmacological approaches, such as dietary supplementations with certain vitamins, omega-3 polyunsaturated fatty acids, probiotics, some phytochemicals (e.g., luteolin and sulforaphane), or overall diet interventions (e.g., gluten free and casein free diets) have been considered for the reduction of such comorbidities and the management of ASD. Here, interventional studies describing pharmacological and non-pharmacological treatments in ASD children and adolescents, along with stem cell-based therapies, are reviewed.


Subject(s)
Autism Spectrum Disorder/therapy , Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease , Humans , Risk Factors , Stem Cell Transplantation
10.
Food Funct ; 10(11): 7103-7120, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31621765

ABSTRACT

The aim of this study was the evaluation of the effects of strawberry anthocyanin extract treatment on two in vitro models of murine breast cancer cell lines, in an attempt to detect a specific pathway (AMP-activated protein kinase or AMPK) through which strawberries exert their anticancer activity. The anticancer activity of purified anthocyanin extracts from an Alba cultivar on two murine cancer cell lines, N202/1A (with high levels of the HER2/neu oncogene) and N202/1E (with low levels of the HER2/neu oncogene), was evaluated after 48 and 72 h of treatment. The cell viability and apoptosis, intracellular ROS rates, and cell oxidative damage were assessed. Western blot assays were performed to analyze the expression of several proteins related to apoptosis, autophagy, metastasis, the oxidative status, mitochondrial functionality, and the AMPK pathway. This study demonstrated that the anthocyanin extract of Alba strawberry shows an antiproliferative effect on cancer cells, through the induction of apoptosis and oxidative stress, by stimulating different molecular pathways. This study is one of the first studies that have tried to deepen the understanding of a candidate pathway for the explanation of the effects of strawberry on cancer cells. A relationship between the AMPK pathway and the anticancer effects of strawberries was demonstrated.


Subject(s)
Anthocyanins/pharmacology , Breast Neoplasms/physiopathology , Fragaria/chemistry , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Anthocyanins/isolation & purification , Apoptosis/drug effects , Autophagy/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism
11.
Molecules ; 23(9)2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30208664

ABSTRACT

Honey is a natural substance appreciated for its therapeutic abilities since ancient times. Its content in flavonoids and phenolic acids plays a key role on human health, thanks to the high antioxidant and anti-inflammatory properties that they exert. Honey possesses antimicrobial capacity and anticancer activity against different types of tumors, acting on different molecular pathways that are involved on cellular proliferation. In addition, an antidiabetic activity has also been highlighted, with the reduction of glucose, fructosamine, and glycosylated hemoglobin serum concentration. Honey exerts also a protective effect in the cardiovascular system, where it mainly prevents the oxidation of low-density lipoproteins, in the nervous system, in the respiratory system against asthma and bacterial infections, and in the gastrointestinal system. A beneficial effect of honey can also be demonstrated in athletes. The purpose of this review is to summarize and update the current information regarding the role of honey in health and diseases.


Subject(s)
Honey/analysis , Phenols/chemistry , Phenols/pharmacology , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cardiotonic Agents/chemistry , Cardiotonic Agents/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Signal Transduction/drug effects
12.
Sci Rep ; 6: 30917, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27498973

ABSTRACT

We describe the biological effects of a polyphenol-rich strawberry extract (PRSE), obtained from the "Alba" variety, on the highly aggressive and invasive basal-like breast cancer cell line A17. Dose-response and time-course experiments showed that PRSE is able to decrease the cellular viability of A17 cells in a time- and dose-dependent manner. PRSE effect on cell survival was investigated in other tumor and normal cell lines of both mouse and human origin, demonstrating that PRSE is more active against breast cancer cells. Cytofluorimetric analysis of A17 cells demonstrated that sub-lethal doses of PRSE reduce the number of cells in S phase, inducing the accumulation of cells in G1 phase of cell cycle. In addition, the migration of A17 cells was studied monitoring the ability of PRSE to inhibit cellular mobility. Gene expression analysis revealed the modulation of 12 genes playing different roles in the cellular migration, adhesion and invasion processes. Finally, in vivo experiments showed the growth inhibition of A17 cells orthotopically transplanted into FVB syngeneic mice fed with PRSE. Overall, we demonstrated that PRSE exerts important biological activities against a highly invasive breast cancer cell line both in vitro and in vivo suggesting the strawberry extracts as preventive/curative food strategy.


Subject(s)
Antineoplastic Agents/pharmacology , Fragaria/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/isolation & purification , Breast Neoplasms/drug therapy , Cell Adhesion/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Disease Models, Animal , Gene Expression Profiling , Heterografts , Humans , Mice , Neoplasm Transplantation , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Polyphenols/administration & dosage , Polyphenols/isolation & purification , Treatment Outcome
13.
Int J Mol Sci ; 17(7)2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27409612

ABSTRACT

Strawberries are highly appreciated for their taste, nutritional value and antioxidant compounds, mainly phenolics. Fruit antioxidants derive from achenes and flesh, but achene contribution to the total fruit antioxidant capacity and to the bioaccessibility after intake is still unknown. In this work, the content of total phenolic compounds, flavonoids, anthocyanins and antioxidant capacity (TEAC, FRAP and DPPH) of achenes and flesh were compared in non-digested as well as in gastric and intestinal extracts after in vitro digestion. Results showed that, despite strawberry achenes represent a small fraction of the fruit, their contribution to total fruit antioxidant content was more than 41% and accounted for 81% of antioxidant capacity (TEAC). Achenes have higher quantity and different quality of antioxidants in non-digested and digested extracts. Antioxidant release was higher in the in vitro gastric digested extracts, but digestion conditions did not only affect quantity but quality, resulting in differences in antioxidant capacity and highlighting the importance of simulating physiological-like extraction conditions for assessing fruit antioxidant properties on human health. These results give new insights into the use of strawberry achenes as a source of bioactive compounds to be considered in strawberry breeding programs for improving human health.


Subject(s)
Fragaria/chemistry , Plant Extracts/chemistry , Anthocyanins/analysis , Antioxidants/analysis , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Flavonoids/analysis , Fragaria/metabolism , Fruit/chemistry , Fruit/metabolism , Humans , Phenols/analysis
14.
Int J Mol Sci ; 16(8): 17870-84, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26247940

ABSTRACT

Strawberry polyphenols have been extensively studied over the last two decades for their beneficial properties. Recently, their possible use in ameliorating skin conditions has also been proposed; however, their role in preventing UVA-induced damage in cosmetic formulation has not yet been investigated. Skin is constantly exposed to several environmental stressors, such as UVA radiation, that induce oxidative stress, inflammation and cell death via the production of reactive oxygen species (ROS). In the present study, we assessed the potential photoprotective capacity of different strawberry-based formulations, enriched with nanoparticles of Coenzyme Q10 and with sun protection factor 10 (SPF10), in human dermal fibroblasts (HuDe) exposed to UVA radiation. We confirmed that strawberries are a very rich source of polyphenols, anthocyanins and vitamins, and possess high total antioxidant capacity. We also showed that strawberry extracts (25 µg/mL-1 mg/mL) exert a noticeable photoprotection in HuDe, increasing cell viability in a dose-dependent way, and that these effects are potentiated by the presence of CoQ10red (100 µg/mL). We have demonstrated for the first time that the topical use of strawberry extract may provide good photoprotection, even if more in-depth studies are strongly encouraged in order to evaluate the cellular and molecular effects of strawberry protection.


Subject(s)
Antioxidants/pharmacology , Fibroblasts/drug effects , Fragaria/chemistry , Plant Extracts/pharmacology , Sunscreening Agents/pharmacology , Antioxidants/chemistry , Cells, Cultured , Fibroblasts/radiation effects , Humans , Plant Extracts/chemistry , Sunscreening Agents/chemistry , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...