Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Pharmacol Res ; 196: 106924, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37709185

ABSTRACT

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the fourth leading cause of cancer-related fatalities in 2020. Survival rates for metastatic disease have slightly improved in recent decades, with clinical trials showing median overall survival of approximately 24-30 months. This progress can be attributed to the integration of chemotherapeutic treatments alongside targeted therapies and immunotherapy. Despite these modest improvements, the primary obstacle to successful treatment for advanced CRC lies in the development of chemoresistance, whether inherent or acquired, which remains the major cause of treatment failure. Epigenetics has emerged as a hallmark of cancer, contributing to master transcription regulation and genome stability maintenance. As a result, epigenetic factors are starting to appear as potential clinical biomarkers for diagnosis, prognosis, and prediction of treatment response in CRC.In recent years, numerous studies have investigated the influence of DNA methylation, histone modifications, and chromatin remodelers on responses to chemotherapeutic treatments. While there is accumulating evidence indicating their significant involvement in various types of cancers, the exact relationship between chromatin landscapes and treatment modulation in CRC remains elusive. This review aims to provide a comprehensive summary of the most pertinent and extensively researched epigenetic-associated mechanisms described between 2015 and 2022 and their potential usefulness as predictive biomarkers in the metastatic disease.

2.
Int J Mol Sci ; 24(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37511023

ABSTRACT

1,3,4-Oxadiazole derivatives are among the most studied anticancer drugs. Previous studies have analyzed the action of different 1,3,4-oxadiazole derivatives and their effects on cancer cells. This study investigated the characterization of two new compounds named 6 and 14 on HeLa and PC-3 cancer cell lines. Based on the previously obtained IC50, cell cycle effects were monitored by flow cytometry. RNA sequencing (RNAseq) was performed to identify differentially expressed genes, followed by functional annotation using gene ontology (GO), KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network analyses. The tubulin polymerization assay was used to analyze the interaction of both compounds with tubulin. The results showed that 6 and 14 strongly inhibited the proliferation of cancer cells by arresting them in the G2/M phase of the cell cycle. Transcriptome analysis showed that exposure of HeLa and PC-3 cells to the compounds caused a marked reprograming of gene expression. Functional enrichment analysis indicated that differentially expressed genes were significantly enriched throughout the cell cycle and cancer-related biological processes. Furthermore, PPI network, hub gene, and CMap analyses revealed that compounds 14 and 6 shared target genes with established microtubule inhibitors, indicating points of similarity between the two molecules and microtubule inhibitors in terms of the mechanism of action. They were also able to influence the polymerization process of tubulin, suggesting the potential of these new compounds to be used as efficient chemotherapeutic agents.


Subject(s)
Antineoplastic Agents , Chalcogens , Neoplasms , Humans , Tubulin/genetics , Tubulin/metabolism , Structure-Activity Relationship , Cell Proliferation , Antineoplastic Agents/pharmacology , HeLa Cells , Tubulin Modulators/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor
3.
Sci Rep ; 12(1): 6925, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484167

ABSTRACT

Evidence about the involvement of genetic factors in the development of gambling disorder (GD) has been assessed. Among studies assessing heritability and biological vulnerability for GD, neurotrophin (NTF) genes have emerged as promising targets, since a growing literature showed a possible link between NTF and addiction-related disorders. Thus, we aimed to explore the role of NTF genes and GD with the hypothesis that some NTF gene polymorphisms could constitute biological risk factors. The sample included 166 patients with GD and 191 healthy controls. 36 single nucleotide polymorphisms (SNPs) from NTFs (NGF, NGFR, NTRK1, BDNF, NTRK2, NTF3, NTRK3, NTF4, CNTF and CNTFR) were selected and genotyped. Linkage disequilibrium (LD) and haplotype constructions were analyzed, in relationship with the presence of GD. Finally, regulatory elements overlapping the identified SNPs variants associated with GD were searched. The between groups comparisons of allele frequencies indicated that 6 SNPs were potentially associated with GD. Single and multiple-marker analyses showed a strong association between both NTF3 and NTRK2 genes, and GD. The present study supports the involvement of the NTF family in the aetiopathogenesis of GD. An altered cross-regulation of different NTF members signalling pathways might be considered as a biological vulnerability factor for GD.


Subject(s)
Gambling , Gambling/genetics , Gene Frequency , Haplotypes , Humans , Nerve Growth Factors/genetics , Polymorphism, Single Nucleotide
4.
Methods ; 187: 68-76, 2021 03.
Article in English | MEDLINE | ID: mdl-32360441

ABSTRACT

Super resolution microscopy has changed our capability to visualize and understand spatial arrangements of RNA- and protein-containing domains in individual cells. In a previous study, we described a novel lncRNA, Tumor-associated NBL2 transcript (TNBL), which originates from a primate specific macrosatellite repeat. We aimed to describe several aspects of TNBL lncRNA, with one focus being pinpointing its precise location in the nucleus, as well as visualizing its interactions with proteins to deduce its functionality. Using a combination of STimulated Emission Depletion (STED) super resolution microscopy, single molecule RNA (smRNA) FISH against TNBL, and immunofluorescence against SAM68 perinucleolar body, we resolved the spatial complexity of the interaction between TNBL aggregates and SAM68 bodies at the perinucleolar region. Here, we describe protocols for a step-by-step optimized smRNA FISH/IF and STED imaging, detailing parameter settings, and three-dimensional data analysis of spatial positioning of subnuclear structures. These protocols can be employed for single-cell imaging of complex nuclear RNA-protein structures.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , DNA-Binding Proteins/genetics , Epigenomics/methods , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , Single Molecule Imaging/methods , Cell Line, Tumor , Cell Nucleus/metabolism , Humans , In Situ Hybridization, Fluorescence/methods , Microscopy, Fluorescence/methods , RNA, Long Noncoding/analysis , Spatio-Temporal Analysis
5.
Semin Cell Dev Biol ; 97: 26-37, 2020 01.
Article in English | MEDLINE | ID: mdl-31002867

ABSTRACT

Heart failure of ischemic origin is caused by the presence of a large scar resulting from an acute myocardial infarction. Acute myocardial infarction generally occurs when blood supply to the heart is blocked. Regenerative strategies that limit infarct injury would be able to prevent adverse post-ischemic remodelling and maintain the structural support necessary for effective cardiomyocyte contraction. Our understanding of endogenous cardiac regeneration and its biology has exposed a variety of targets for therapeutic approaches, such as non-coding RNAs, DNA methylation, histone modifications, direct cardiac reprogramming, cell transplantation, stimulation of resident cardiomyocytes, proliferation, and inhibition of cardiomyocyte death. In this review, we address the epigenetic mechanisms underlying these strategies and the use of therapeutic epigenetic molecules or epidrugs.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic/genetics , Myocytes, Cardiac/drug effects , Regeneration/drug effects , Humans
7.
Chem Biol Interact ; 312: 108813, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31494105

ABSTRACT

Rhabdomyosarcoma (RMS) is a pediatric tumor, which arises from muscle precursor cells. Recently, it has been demonstrated that Hippo Pathway (Hpo), a pathway that regulates several physiological and biological features, is involved in RMS tumorigenesis. For instance, an upregulation of the Hpo downstream effector Yes-Associated Protein 1 (YAP) leads to the development of embryonal rhabdomyosarcoma (eRMS) in murine activated muscle satellite cells. On the other hand, the YAP paralog transcriptional co-activator with PDZ-binding motif (TAZ) is overexpressed in alveolar rhabdomyosarcoma (aRMS) patients with poor survival. YAP and TAZ exhibit both cytoplasmic and nuclear functions. In the nucleus, YAP binds TEADs (TEA domain family members) factors and together they constitute a complex that is able either to activate the transcription of several genes such as MYC, Tbx5 and PAX8 or to maintain the stability of others like p73. Due to the key role of YAP and TAZ in cancer, the identification and/or development of new compounds able to block their activity might be an effective antineoplastic strategy. Verteporfin (VP) is a molecule able to stop the formation of YAP/TEAD complex in the nucleus. The aim of this study is to evaluate the action of VP on RMS cell lines. This work shows that VP has an anti-proliferative activity on all RMS cell lines analyzed. Depending on RMS cell lines, VP affects cell cycle differently. Moreover, VP is able to decrease YAP protein levels, and to induce the activation of apoptosis mechanism through the cleavage of PARP-1. In addition, Annexin V assay showed the activation of apoptosis and necrosis after VP treatment. In summary, the ability of VP to disrupt RMS cell proliferation could be a novel and valuable strategy to improve the therapeutic approaches in treating rhabdomyosarcoma.


Subject(s)
Cell Proliferation/drug effects , Verteporfin/pharmacology , Acyltransferases , Cell Cycle Proteins , Cell Line, Tumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Rhabdomyosarcoma, Alveolar/metabolism , Rhabdomyosarcoma, Alveolar/pathology , Rhabdomyosarcoma, Embryonal/metabolism , Rhabdomyosarcoma, Embryonal/pathology , Transcription Factors/metabolism
8.
Nucleic Acids Res ; 46(11): 5504-5524, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29912433

ABSTRACT

Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer.


Subject(s)
Colonic Neoplasms/genetics , DNA Methylation/genetics , DNA, Satellite/genetics , RNA, Long Noncoding/genetics , Acetylation , Breast Neoplasms/genetics , CELF1 Protein/metabolism , Caco-2 Cells , Cell Line, Tumor , Cell Nucleus/metabolism , Female , HCT116 Cells , Histones/metabolism , Humans , Mitosis/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Ovarian Neoplasms/genetics
9.
Epigenetics ; 12(7): 515-526, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28426282

ABSTRACT

Abundant repetitive DNA sequences are an enigmatic part of the human genome. Despite increasing evidence on the functionality of DNA repeats, their biologic role is still elusive and under frequent debate. Macrosatellites are the largest of the tandem DNA repeats, located on one or multiple chromosomes. The contribution of macrosatellites to genome regulation and human health was demonstrated for the D4Z4 macrosatellite repeat array on chromosome 4q35. Reduced copy number of D4Z4 repeats is associated with local euchromatinization and the onset of facioscapulohumeral muscular dystrophy. Although the role other macrosatellite families may play remains rather obscure, their diverse functionalities within the genome are being gradually revealed. In this review, we will outline structural and functional features of coding and noncoding macrosatellite repeats, and highlight recent findings that bring these sequences into the spotlight of genome organization and disease development.


Subject(s)
DNA, Satellite , Muscular Dystrophy, Facioscapulohumeral/genetics , Chromosomes, Human, Pair 4/genetics , Epigenesis, Genetic , Genome, Human , Humans
10.
Epigenetics ; 12(3): 238-245, 2017 Mar 04.
Article in English | MEDLINE | ID: mdl-28121228

ABSTRACT

The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled "Beyond Cancer Genomes" took place October 13th and 14th 2016 in Barcelona. The 2016 BCEC was the fourth edition of a series of annual conferences coordinated by Marcus Buschbeck and subsequently organized by leading research centers in Barcelona together with B•DEBATE, a joint initiative of BIOCAT and "La Caixa" Foundation. Salvador Aznar-Benitah, Eduard Batlle, and Raúl Méndez from the Institute for Research in Biomedicine in Barcelona selected the 2016 BCEC panel of speakers. As the title indicates, this year's conference expanded the epigenetic focus to include additional cancer-relevant topics, such as tumor heterogeneity and RNA regulation. Methods to develop therapeutic approaches on the basis of novel insights have been discussed in great detail. The conference has attracted 217 participants from 11 countries.


Subject(s)
Epigenesis, Genetic , Neoplasms/genetics , Humans
11.
Epigenomes ; 1(1)2017 Jun.
Article in English | MEDLINE | ID: mdl-31867127

ABSTRACT

DNA hypomethylation at repetitive elements accounts for the genome-wide DNA hypomethylation common in cancer, including colorectal cancer (CRC). We identified a pericentromeric repeat element called SST1 frequently hypomethylated (>5% demethylation compared with matched normal tissue) in several cancers, including 28 of 128 (22%) CRCs. SST1 somatic demethylation associated with genome damage, especially in tumors with wild-type TP53. Seven percent of the 128 CRCs exhibited a higher ("severe") level of demethylation (≥10%) that co-occurred with TP53 mutations. SST1 demethylation correlated with distinct histone marks in CRC cell lines and primary tumors: demethylated SST1 associated with high levels of the repressive histone 3 lysine 27 trimethylation (H3K27me3) mark and lower levels of histone 3 lysine 9 trimethylation (H3K9me3). Furthermore, induced demethylation of SST1 by 5-aza-dC led to increased H3K27me3 and reduced H3K9me3. Thus, in some CRCs, SST1 demethylation reflects an epigenetic reprogramming associated with changes in chromatin structure that may affect chromosomal integrity. The chromatin remodeler factor, the helicase lymphoid-specific (HELLS) enzyme, called the "epigenetic guardian of repetitive elements", interacted with SST1 as shown by chromatin immunoprecipitation, and down-regulation of HELLS by shRNA resulted in demethylation of SST1 in vitro. Altogether these results suggest that HELLS contributes to SST1 methylation maintenance. Alterations in HELLS recruitment and function could contribute to the somatic demethylation of SST1 repeat elements undergone before and/or during CRC pathogenesis.

12.
Mol Cancer Res ; 14(9): 841-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27280713

ABSTRACT

UNLABELLED: Peptidyl arginine deiminases (PADI) are a family of enzymes that catalyze the poorly understood posttranslational modification converting arginine residues into citrullines. In this study, the role of PADIs in the pathogenesis of colorectal cancer was investigated. Specifically, RNA expression was analyzed and its association with survival in a cohort of 98 colorectal cancer patient specimens with matched adjacent mucosa and 50 controls from donors without cancer. Key results were validated in an independent collection of tumors with matched adjacent mucosa and by mining of a publicly available expression data set. Protein expression was analyzed by immunoblotting for cell lines or IHC for patient specimens that further included 24 cases of adenocarcinoma with adjacent dysplasia and 11 cases of active ulcerative colitis. The data indicate that PADI2 is the dominantly expressed PADI enzyme in colon mucosa and is upregulated during differentiation. PADI2 expression is low or absent in colorectal cancer. Frequently, this occurs already at the stage of low-grade dysplasia. Mucosal PADI2 expression is also low in ulcerative colitis. The expression level of PADI2 in tumor and adjacent mucosa correlates with differential survival: low levels associate with poor prognosis. IMPLICATIONS: Downregulation of PADI2 is an early event in the pathogenesis of colorectal cancer associated with poor prognosis and points toward a possible role of citrullination in modulating tumor cells and their microenvironment. Mol Cancer Res; 14(9); 841-8. ©2016 AACR.


Subject(s)
Colorectal Neoplasms/enzymology , Hydrolases/biosynthesis , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Carcinogenesis , Case-Control Studies , Cell Differentiation/physiology , Cell Line, Tumor , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Down-Regulation , Enterocytes/enzymology , Enterocytes/pathology , HCT116 Cells , HT29 Cells , Humans , Hydrolases/genetics , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Prognosis , Protein-Arginine Deiminase Type 2 , Protein-Arginine Deiminases
13.
Int J Cancer ; 139(5): 1106-16, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27074337

ABSTRACT

Squamous cell carcinomas have a range of histopathological manifestations. The parameters that determine this clinically observed heterogeneity are not fully understood. Here, we report the generation of a cell culture model that reflects part of this heterogeneity. We have used the catalytic subunit of human telomerase hTERT and large T to immortalize primary UV-unexposed keratinocytes. Then, mutant HRAS G12V has been introduced to transform these immortal keratinocytes. When injected into immunosuppressed mice, transformed cells grew as xenografts with distinct histopathological characteristics. We observed three major tissue architectures: solid, sarcomatoid and cystic growth types, which were primarily composed of pleomorphic and basaloid cells but in some cases displayed focal apocrine differentiation. We demonstrate that the cells generated represent different stages of skin cancerogenesis and as such can be used to identify novel tumor-promoting alterations such as the overexpression of the PADI2 oncogene in solid-type SCC. Importantly, the cultured cells maintain the characteristics from the xenograft they were derived from while being amenable to manipulation and analysis. The availability of cell lines representing different clinical manifestations opens a new tool to study the stochastic and deterministic factors that cause case-to-case heterogeneity despite departing from the same set of oncogenes and the same genetic background.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Mutation , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cell Line, Transformed , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Gene Expression , Genetic Association Studies , Heterografts , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice
14.
Front Aging Neurosci ; 7: 123, 2015.
Article in English | MEDLINE | ID: mdl-26217219

ABSTRACT

Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and manipulate adult stem cells from muscle tissue. However, this population of endogenous myogenic progenitors in adults is limited and their access is difficult and invasive. Therefore, other sources of stem cells with potential to regenerate muscles need to be examined. An excellent candidate could be a population of adult stromal cells within fat characterized by mesenchymal properties, which have been termed adipose-derived stem cells (ASCs). These progenitor adult stem cells have been successfully differentiated in vitro to osteogenic, chondrogenic, neurogenic and myogenic lineages. Autologous ASCs are multipotent and can be harvested with low morbidity; thus, they hold promise for a range of therapeutic applications. This review will summarize the use of ASCs in muscle regenerative approaches.

15.
Oncotarget ; 6(26): 22375-96, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26090614

ABSTRACT

TREX2 is a 3'-DNA exonuclease specifically expressed in keratinocytes. Here, we investigated the relevance and mechanisms of TREX2 in ultraviolet (UV)-induced skin carcinogenesis. TREX2 expression was up-regulated by chronic UV exposure whereas it was de-regulated or lost in human squamous cell carcinomas (SCCs). Moreover, we identified SNPs in the TREX2 gene that were more frequent in patients with head and neck SCCs than in healthy individuals. In mice, TREX2 deficiency led to enhanced susceptibility to UVB-induced skin carcinogenesis which was preceded by aberrant DNA damage removal and degradation as well as reduced inflammation. Specifically, TREX2 loss diminished the up-regulation of IL12 and IFNγ, key cytokines related to DNA repair and antitumor immunity. In UV-treated keratinocytes, TREX2 promoted DNA repair and passage to late apoptotic stages. Notably, TREX2 was recruited to low-density nuclear chromatin and micronuclei, where it interacted with phosphorylated H2AX histone, which is a critical player in both DNA repair and cell death. Altogether, our data provide new insights in the molecular mechanisms of TREX2 activity and establish cell autonomous and non-cell autonomous functions of TREX2 in the UVB-induced skin response.


Subject(s)
Carcinoma, Squamous Cell/enzymology , Exodeoxyribonucleases/metabolism , Phosphoproteins/metabolism , Skin Neoplasms/enzymology , Ultraviolet Rays/adverse effects , Animals , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/pathology , DNA Damage , Exodeoxyribonucleases/genetics , Female , Humans , Keratinocytes/enzymology , Keratinocytes/radiation effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoproteins/genetics , Skin Neoplasms/etiology , Skin Neoplasms/pathology
16.
Epigenetics ; 10(4): 352-9, 2015.
Article in English | MEDLINE | ID: mdl-25849957

ABSTRACT

The Second German-Catalan Workshop on Epigenetics and Cancer was held in Barcelona on November 19-21, 2014. The workshop brought together, for the second time, scientists from 2 German and 2 Catalan research institutions: the DKFZ, from Heidelberg, the CRCME, from Freiburg, and the IMPPC and PEBC/IDIBELL, both from Barcelona. The German-Catalan Workshops are intended to establish the framework for building a Research School to foster collaborations between researchers from the different institutions. Exchange programs for graduate students are among the activities of the future School. The topics presented and discussed in 33 talks were diverse and included work on DNA methylation, histone modifications, chromatin biology, characterization of imprinted regions in human tissues, non-coding RNAs, and epigenetic drug discovery. Among novel developments from the previous Workshop are the report of the epigenetics angle of the Warburg effect and the long-range trans-acting interaction of DNA methylation and of nucleosome remodeling. A shift in the view on DNA methylation became apparent by the realization of the intertwined interplay between hyper- and hypo-methylation in differentiation and cancer.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Neoplasms/genetics , Chromatin Assembly and Disassembly , Drug Discovery , Humans
17.
FEBS Lett ; 588(14): 2353-62, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24873882

ABSTRACT

In mammals, the linker histone H1, involved in DNA packaging into chromatin, is represented by a family of variants. H1 tails undergo post-translational modifications (PTMs) that can be detected by mass spectrometry. We developed antibodies to analyze several of these as yet unexplored PTMs including the combination of H1.4 K26 acetylation or trimethylation and S27 phosphorylation. H1.2-T165 phosphorylation was detected at S and G2/M phases of the cell cycle and was dispensable for chromatin binding and cell proliferation; while the H1.4-K26 residue was essential for proper cell cycle progression. We conclude that histone H1 PTMs are dynamic over the cell cycle and that the recognition of modified lysines may be affected by phosphorylation of adjacent residues.


Subject(s)
Histones/metabolism , Protein Processing, Post-Translational , Acetylation , Cell Line, Tumor , Humans , Methylation , Phosphorylation
18.
Cell Rep ; 3(3): 661-70, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23478022

ABSTRACT

Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for "disease in a dish" models of muscular physiology and dysfunction.


Subject(s)
Cellular Reprogramming , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Muscle Fibers, Skeletal/cytology , Cell Line , Cell Lineage , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone , Embryonic Stem Cells/cytology , Humans , Mesoderm/cytology , Muscle Contraction , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/physiology , MyoD Protein/genetics , MyoD Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Nature ; 494(7435): 105-10, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23354045

ABSTRACT

Cellular reprogramming of somatic cells to patient-specific induced pluripotent stem cells (iPSCs) enables in vitro modelling of human genetic disorders for pathogenic investigations and therapeutic screens. However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging owing to the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited heart disease characterized by pathological fatty infiltration and cardiomyocyte loss predominantly in the right ventricle, which is associated with life-threatening ventricular arrhythmias. Over 50% of affected individuals have desmosome gene mutations, most commonly in PKP2, encoding plakophilin-2 (ref. 9). The median age at presentation of ARVD/C is 26 years. We used previously published methods to generate iPSC lines from fibroblasts of two patients with ARVD/C and PKP2 mutations. Mutant PKP2 iPSC-CMs demonstrate abnormal plakoglobin nuclear translocation and decreased ß-catenin activity in cardiogenic conditions; yet, these abnormal features are insufficient to reproduce the pathological phenotypes of ARVD/C in standard cardiogenic conditions. Here we show that induction of adult-like metabolic energetics from an embryonic/glycolytic state and abnormal peroxisome proliferator-activated receptor gamma (PPAR-γ) activation underlie the pathogenesis of ARVD/C. By co-activating normal PPAR-alpha-dependent metabolism and abnormal PPAR-γ pathway in beating embryoid bodies (EBs) with defined media, we established an efficient ARVD/C in vitro model within 2 months. This model manifests exaggerated lipogenesis and apoptosis in mutant PKP2 iPSC-CMs. iPSC-CMs with a homozygous PKP2 mutation also had calcium-handling deficits. Our study is the first to demonstrate that induction of adult-like metabolism has a critical role in establishing an adult-onset disease model using patient-specific iPSCs. Using this model, we revealed crucial pathogenic insights that metabolic derangement in adult-like metabolic milieu underlies ARVD/C pathologies, enabling us to propose novel disease-modifying therapeutic strategies.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/metabolism , Arrhythmogenic Right Ventricular Dysplasia/pathology , Induced Pluripotent Stem Cells/pathology , Models, Biological , Active Transport, Cell Nucleus , Age of Onset , Apoptosis/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Cellular Reprogramming , Culture Media/pharmacology , Embryoid Bodies/drug effects , Embryoid Bodies/physiology , Energy Metabolism/genetics , Fatty Acids/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Glucose/metabolism , Glycolysis , Humans , Induced Pluripotent Stem Cells/metabolism , Lipogenesis/genetics , Myocardial Contraction/drug effects , Myocytes, Cardiac/pathology , PPAR alpha/metabolism , PPAR gamma/metabolism , Phenotype , Plakophilins/genetics , Time Factors , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...