Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 12(6): 725-732, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37195203

ABSTRACT

Enzymatically degradable peptides are commonly used as linkers within hydrogels for biological applications; however, controlling the degradation of these engineered peptides with different contexts and cell types can prove challenging. In this work, we systematically examined the substitution of d-amino acids (D-AAs) for different l-amino acids in a peptide sequence commonly utilized in enzymatically degradable hydrogels (VPMS↓MRGG) to create peptide linkers with a range of different degradation times, in solution and in hydrogels, and investigated the cytocompatibility of these materials. We found that increasing the number of D-AA substitutions increased the resistance to enzymatic degradation both for free peptide and peptide-linked hydrogels; yet, this trend also was accompanied by increased cytotoxicity in cell culture. This work demonstrates the utility of D-AA-modified peptide sequences to create tunable biomaterials platforms tempered by considerations of cytotoxicity, where careful selection and optimization of different peptide designs is needed for specific biological applications.


Subject(s)
Hydrogels , Peptides , Hydrogels/pharmacology , Amino Acid Substitution , Peptides/chemistry , Biocompatible Materials , Cellular Microenvironment
2.
Nat Rev Methods Primers ; 2: 98, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-37461429

ABSTRACT

Cells' local mechanical environment can be as important in guiding cellular responses as many well-characterized biochemical cues. Hydrogels that mimic the native extracellular matrix can provide these mechanical cues to encapsulated cells, allowing for the study of their impact on cellular behaviours. Moreover, by harnessing cellular responses to mechanical cues, hydrogels can be used to create tissues in vitro for regenerative medicine applications and for disease modelling. This Primer outlines the importance and challenges of creating hydrogels that mimic the mechanical and biological properties of the native extracellular matrix. The design of hydrogels for mechanobiology studies is discussed, including appropriate choice of cross-linking chemistry and strategies to tailor hydrogel mechanical cues. Techniques for characterizing hydrogels are explained, highlighting methods used to analyze cell behaviour. Example applications for studying fundamental mechanobiological processes and regenerative therapies are provided, along with a discussion of the limitations of hydrogels as mimetics of the native extracellular matrix. The article ends with an outlook for the field, focusing on emerging technologies that will enable new insights into mechanobiology and its role in tissue homeostasis and disease.

3.
ACS Biomater Sci Eng ; 7(9): 4175-4195, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34283566

ABSTRACT

Peptides are of continued interest for therapeutic applications, from soluble and immobilized ligands that promote desired binding or uptake to self-assembled supramolecular structures that serve as scaffolds in vitro and in vivo. These applications require efficient and scalable synthetic approaches because of the large amounts of material that often are needed for studies of bulk material properties and their translation. In this work, we establish new methods for the synthesis, purification, and visualization of assembling peptides, with a focus on multifunctional collagen mimetic peptides (mfCMPs) relevant for formation and integration within hydrogel-based biomaterials. First, a methodical approach useful for the microwave-assisted synthesis of assembling peptide sequences prone to deletions was established, beginning with the identification of the deleted residues and their locations and followed by targeted use of dual chemistry couplings for those specific residues. Second, purification techniques that integrate the principles of heating and ion displacement with traditional chromatography and dialysis were implemented to improve separation and isolation of the desired multifunctional peptide product, which contained blocks for thermoresponsiveness and ionic interactions. Third, an approach for fluorescent labeling of these mfCMPs, which is orthogonal to their assembly and their covalent incorporation into a bulk hydrogel material, was established, allowing visualization of the resulting hierarchical fibrillar structures in three dimensions within hydrogels using confocal microscopy. The methods presented in this work allow the production of multifunctional peptides in scalable quantities and with minimal deletions, enabling future studies for better understanding of composition-structure-property relationships and for translating these biomaterials into a range of applications. Although mfCMPs are the focus of this work, the methods demonstrated could prove useful for other assembling peptide systems and for the production of peptides more broadly for therapeutic applications.


Subject(s)
Biocompatible Materials , Hydrogels , Collagen , Peptides , Renal Dialysis
4.
Tissue Eng Part C Methods ; 26(10): 506-518, 2020 10.
Article in English | MEDLINE | ID: mdl-32988293

ABSTRACT

Tendon injuries are difficult to heal, in part, because intrinsic tendon healing, which is dominated by scar tissue formation, does not effectively regenerate the native structure and function of healthy tendon. Further, many current treatment strategies also fall short of producing regenerated tendon with the native properties of healthy tendon. There is increasing interest in the use of cell-instructive strategies to limit the intrinsic fibrotic response following injury and improve the regenerative capacity of tendon in vivo. We have established multifunctional, cell-instructive hydrogels for treating injured tendon that afford tunable control over the biomechanical, biochemical, and structural properties of the cell microenvironment. Specifically, we incorporated integrin-binding domains (RGDS) and assembled multifunctional collagen mimetic peptides that enable cell adhesion and elongation of stem cells within synthetic hydrogels of designed biomechanical properties and evaluated these materials using targeted success criteria developed for testing in mechanically demanding environments such as tendon healing. The in vitro and in situ success criteria were determined based on systematic reviews of the most commonly reported outcome measures of hydrogels for tendon repair and established standards for testing of biomaterials. We then showed, using validation experiments, that multifunctional and synthetic hydrogels meet these criteria. Specifically, these hydrogels have mechanical properties comparable to developing tendon; are noncytotoxic both in two-dimensional bolus exposure (hydrogel components) and three-dimensional encapsulation (full hydrogel); are formed, retained, and visualized within tendon defects over time (2-weeks); and provide mechanical support to tendon defects at the time of in situ gel crosslinking. Ultimately, the in vitro and in situ success criteria evaluated in this study were designed for preclinical research to rigorously test the potential to achieve successful tendon repair before in vivo testing and indicate the promise of multifunctional and synthetic hydrogels for continued translation. Impact statement Tendon healing results in a weak scar that forms due to poor cell-mediated repair of the injured tissue. Treatments that tailor the instructions experienced by cells during healing afford opportunities to regenerate the healthy tendon. Engineered cell-instructive cues, including the biomechanical, biochemical, and structural properties of the cell microenvironment, within multifunctional synthetic hydrogels are promising therapeutic strategies for tissue regeneration. In this article, the preclinical efficacy of multifunctional synthetic hydrogels for tendon repair is tested against rigorous in vitro and in situ success criteria. This study indicates the promise for continued preclinical translation of synthetic hydrogels for tissue regeneration.


Subject(s)
Hydrogels/pharmacology , Materials Testing , Regeneration/drug effects , Tendons/physiology , Animals , Biomechanical Phenomena/drug effects , Cell Line , Female , Humans , Polymerization , Rats, Long-Evans , Tendon Injuries/physiopathology , Tendons/drug effects
5.
ACS Appl Bio Mater ; 3(6): 3731-3740, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-34322660

ABSTRACT

Wrinkled polymer surfaces find broad applicability; however, the polymer substrates are often limited to poly(dimethylsiloxane) (PDMS), which limits spatial control over wrinkle features and surface chemistry. An approach to surface functionalization of wrinkled elastomer substrates is demonstrated through versatile, multistep thiol-ene click chemistry. The elastomer is formed using a thiol-Michael reaction of tetrathiol with excess diacrylates while wrinkle formation is induced through a second free radical UV polymerization of the acrylates on the surface of the elastomer. Due to oxygen inhibition of the free radical polymerization, pendant acrylates at the surface remain unreacted and are subsequently functionalized with a multi-functional thiol, which can be further reacted through a number of thiol-X 'click' reactions. As a demonstration, these thiol surfaces are further modified to either promote cell adhesion of human mesenchymal stem cells (hMSCs) through coupling with RGDS-containing peptides or surface passivation through reaction with hydrophilic hydroxyl ethyl acrylate moieties. Through engineering a combination of surface chemistry and surface topography, hMSCs exhibited increased spreading and cell density on RGDS-functionalized surfaces and a two-fold increase in cell alignment when cultured on wrinkled substrates. Gradient functionalized surfaces created by tuning the wrinkle wavelength with UV irradiation enabled rapid screening of the effect of topography on the hMSCs. Further, this novel application of click chemistry enables simultaneous tuning of wrinkle topology and surface chemistry towards targeted material applications.

6.
Biomater Sci ; 8(5): 1256-1269, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31854388

ABSTRACT

Approaches for the creation of soft materials, particularly hydrogels, with hierarchical structure are of interest in a variety of applications owing to their unique properties. In the context of tissue mimics, hydrogels with multiscale structures more accurately capture the complexities of tissues within the body (e.g., fibrous collagen-rich microenvironments). However, cytocompatible fabrication of such materials with hierarchical structures and independent control of mechanical and biochemical properties remains challenging and is needed for probing and directing cell-microenvironment interactions for three-dimensional (3D) cell encapsulation and culture applications. To address this, we have designed innovative multifunctional assembling peptides: these unique peptides contain a core block that mimics the structure of collagen for achieving relevant melting temperatures; 'sticky' ends to promote assembly of long fibrils; and a biocompatible reactive handle that is orthogonal to assembly to allow the formation of desired multiscale structures and their subsequent rapid, light-triggered integration within covalently crosslinked synthetic hydrogels. Nano- to micro-fibrils were observed to form in physiologically-relevant aqueous solutions, where both underlying peptide chemical structure and assembly conditions were observed to impact the resulting fibril sizes. These assembled structures were 'locked' into place and integrated as linkers within cell-degradable, bioactive hydrogels formed with photoinitiated thiol-ene 'click' chemistry. Hydrogel compositions were identified for achieving robust mechanical properties like those of soft tissues while also retaining higher ordered structures after photopolymerization. The utility of these innovative materials for 3D cell culture was demonstrated with human mesenchymal stem cells, where cell morphologies reminiscent of responses to assembled native collagen were observed now with a fully synthetic material. Using a bottom-up approach, a new materials platform has been established that combines the advantageous properties of covalent and assembling chemistries for the creation of synthetic hydrogels with controllable nanostructure, mechanical properties, and biochemical content.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Peptides/chemistry , Biocompatible Materials/chemical synthesis , Cell Survival , Cells, Cultured , Humans , Hydrogels/chemical synthesis , Peptides/chemical synthesis , Software
7.
Biomacromolecules ; 18(10): 3131-3142, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28850788

ABSTRACT

Hydrogel-based depots are of growing interest for release of biopharmaceuticals; however, a priori selection of hydrogel compositions that will retain proteins of interest and provide desired release profiles remains elusive. Toward addressing this, in this work, we have established a new tool for the facile assessment of protein release from hydrogels and applied it to evaluate the effectiveness of mesh size estimations on predicting protein retention or release. Poly(ethylene glycol) (PEG)-based hydrogel depots were formed by photoinitiated step growth polymerization of four-arm PEG functionalized with norbornene (PEG-norbornene, 4% w/w to 20% w/w, Mn ∼ 5 to 20 kDa) and different dithiol cross-linkers (PEG Mn ∼ 1.5 kDa or enzymatically degradable peptide), creating well-defined, robust materials with a range of mesh sizes estimated with Flory-Rehner or rubber elasticity theory (∼5 to 15 nm). A cocktail of different model proteins was released from compositions of interest, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to facilely and quantitatively analyze temporal release profiles. Mesh size was predictive of retention of relatively large proteins and release of relatively small proteins. Proteins with diameters comparable to the mesh size, which is often the case for growth factors, were released by hindered diffusion and required experimental assessment of retention and release. With this knowledge, hydrogels were designed for the controlled release of a therapeutically relevant growth factor, PDGF-BB.


Subject(s)
Drug Liberation , Hydrogels/chemistry , Proto-Oncogene Proteins c-sis/chemistry , Becaplermin , Cross-Linking Reagents/chemistry , Hydrogels/chemical synthesis , Norbornanes/chemistry , Polyethylene Glycols/chemistry , Porosity
8.
Biomaterials ; 35(1): 432-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24094935

ABSTRACT

For nearly half a century, contact lenses have been proposed as a means of ocular drug delivery, but achieving controlled drug release has been a significant challenge. We have developed a drug-eluting contact lens designed for prolonged delivery of latanoprost for the treatment of glaucoma, the leading cause of irreversible blindness worldwide. Latanoprost-eluting contact lenses were created by encapsulating latanoprost-poly(lactic-co-glycolic acid) films in methafilcon by ultraviolet light polymerization. In vitro and in vivo studies showed an early burst of drug release followed by sustained release for one month. Contact lenses containing thicker drug-polymer films demonstrated released a greater amount of drug after the initial burst. In vivo, single contact lenses were able to achieve, for at least one month, latanoprost concentrations in the aqueous humor that were comparable to those achieved with topical latanoprost solution, the current first-line treatment for glaucoma. The lenses appeared safe in cell culture and animal studies. This contact lens design can potentially be used as a treatment for glaucoma and as a platform for other ocular drug delivery applications.


Subject(s)
Contact Lenses , Drug Delivery Systems , Glaucoma/drug therapy , Prostaglandins F, Synthetic/administration & dosage , Animals , Drug Stability , Intraocular Pressure/drug effects , Latanoprost , Prostaglandins F, Synthetic/pharmacology , Prostaglandins F, Synthetic/therapeutic use , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...