Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(7): e17301, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385302

ABSTRACT

Phylogeographic studies of continental clades, especially when combined with palaeoclimate modelling, provide powerful insight into how environment drives speciation across climatic contexts. Australia, a continent characterized by disparate modern biomes and dynamic climate change, provides diverse opportunity to reconstruct the impact of past and present environments on diversification. Here, we use genomic-scale data (1310 exons and whole mitogenomes from 111 samples) to investigate Pleistocene diversification, cryptic diversity, and secondary contact in the Australian delicate mice (Hydromyini: Pseudomys), a recent radiation spanning almost all Australian environments. Across northern Australia, we find no evidence for introgression between cryptic lineages within Pseudomys delicatulus sensu lato, with palaeoclimate models supporting contraction and expansion of suitable habitat since the last glacial maximum. Despite multiple contact zones, we also find little evidence of introgression at a continental scale, with the exception of a potential hybrid zone in the mesic biome. In the arid zone, combined insights from genetic data and palaeomodels support a recent expansion in the arid specialist P. hermannsburgensis and contraction in the semi-arid P. bolami. In the face of repeated secondary contact, differences in sperm morphology and chromosomal rearrangements are potential mechanisms that maintain species boundaries in these recently diverged species. Additionally, we describe the western delicate mouse as a new species and recommend taxonomic reinstatement of the eastern delicate mouse. Overall, we show that speciation in an evolutionarily young and widespread clade has been driven by environmental change, and potentially maintained by divergence in reproductive morphology and chromosome rearrangements.


Subject(s)
Reproductive Isolation , Semen , Male , Animals , Mice , Australia , Phylogeny , Bayes Theorem , Ecosystem , Phylogeography , Murinae/genetics , DNA, Mitochondrial/genetics , Genetic Speciation
2.
Sci Total Environ ; 673: 685-693, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31003095

ABSTRACT

Frameworks for human health risk assessment often include the opportunity to correct the estimate of exposure for bioavailability, which could be predicted from bioaccessibility. Lead and As are the only metallic elements for which bioavailability and bioaccessibility have been correlated across a spectrum of mineralogy and particle types. The objective of the present study is to correlate in vivo bioavailability with ex vivo bioaccessibility for elevated Ni in soils of ultramafic origin and explore attribution of any variation in this correlation to mineralogical characterization of the Ni. Ultramafic soils were field collected in British Columbia, CA. Rietveld quantitative X-ray diffraction was used for the characterization and quantification of crystalline materials containing Ni. Bioaccessible Ni was determined using the in vitro method developed by the Solubility/Bioaccessibility Research Consortium. Bioavailable Ni was determined by gavage dose of the soils to Sprague-Dawley rats. Urine and feces were collected every 24 h. At the end of 72 h, the animals were humanely sacrificed using carbon dioxide as per the approved animal care protocol. All organs were harvested, washed and preserved. Fecal elimination of gavaged Ni ranged from 35 to 95% including positive control. Relative bioavailability (RBA) ranged from 5 to 18%. In vitro bioaccessibility (IVBA) of soil Ni ranged from 0 to 17%; IVBA explained 86% of the variation in RBA. Normalizing both axes to soil olivine accounted for an additional 10% of the variation in RBA. For risk assessment of Ni contaminated soils, IVBA would be a useful and cost effective tool in estimating exposure of mammals through ingestion of soil particles, with some additional benefit of considering Ni mineralogy.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollution/statistics & numerical data , Nickel/analysis , Soil Pollutants/analysis , Animals , British Columbia , Humans , In Vitro Techniques , Rats , Rats, Sprague-Dawley , Soil/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...