Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 753, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473868

ABSTRACT

Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies.


Subject(s)
Reproducibility of Results
2.
Nature ; 598(7881): 457-461, 2021 10.
Article in English | MEDLINE | ID: mdl-34671138

ABSTRACT

Ocean dynamics in the equatorial Pacific drive tropical climate patterns that affect marine and terrestrial ecosystems worldwide. How this region will respond to global warming has profound implications for global climate, economic stability and ecosystem health. As a result, numerous studies have investigated equatorial Pacific dynamics during the Pliocene (5.3-2.6 million years ago) and late Miocene (around 6 million years ago) as an analogue for the future behaviour of the region under global warming1-12. Palaeoceanographic records from this time present an apparent paradox with proxy evidence of a reduced east-west sea surface temperature gradient along the equatorial Pacific1,3,7,8-indicative of reduced wind-driven upwelling-conflicting with evidence of enhanced biological productivity in the east Pacific13-15 that typically results from stronger upwelling. Here we reconcile these observations by providing new evidence for a radically different-from-modern circulation regime in the early Pliocene/late Miocene16 that results in older, more acidic and more nutrient-rich water reaching the equatorial Pacific. These results provide a mechanism for enhanced productivity in the early Pliocene/late Miocene east Pacific even in the presence of weaker wind-driven upwelling. Our findings shed new light on equatorial Pacific dynamics and help to constrain the potential changes they will undergo in the near future, given that the Earth is expected to reach Pliocene-like levels of warming in the next century.


Subject(s)
Ecosystem , Seawater/chemistry , Temperature , Foraminifera/classification , Foraminifera/isolation & purification , History, Ancient , Hydrogen-Ion Concentration , Pacific Ocean , Plankton/classification , Plankton/isolation & purification , Water Movements , Wind
3.
Science ; 370(6517)2020 11 06.
Article in English | MEDLINE | ID: mdl-33154110

ABSTRACT

As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation-a practice that we argue should be widely adopted.

5.
Nat Commun ; 9(1): 1358, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29692409

ABSTRACT

Implicit and explicit biases impede the participation of women in science, technology, engineering, and mathematic (STEM) fields. Across career stages, attending conferences and presenting research are ways to spread scientific results, find job opportunities, and gain awards. Here, we present an analysis by gender of the American Geophysical Union Fall Meeting speaking opportunities from 2014 to 2016. We find that women were invited and assigned oral presentations less often than men. However, when we control for career stage, we see similar rates between women and men and women sometimes outperform men. At the same time, women elect for poster presentations more than men. Male primary conveners allocate invited abstracts and oral presentations to women less often and below the proportion of women authors. These results highlight the need to provide equal opportunity to women in speaking roles at scientific conferences as part of the overall effort to advance women in STEM.

6.
Science ; 347(6219): 255-8, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25593181

ABSTRACT

El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate.

7.
Nature ; 486(7401): 97-100, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22678287

ABSTRACT

Deep-time palaeoclimate studies are vitally important for developing a complete understanding of climate responses to changes in the atmospheric carbon dioxide concentration (that is, the atmospheric partial pressure of CO(2), p(co(2))). Although past studies have explored these responses during portions of the Cenozoic era (the most recent 65.5 million years (Myr) of Earth history), comparatively little is known about the climate of the late Miocene (∼12-5 Myr ago), an interval with p(co(2)) values of only 200-350 parts per million by volume but nearly ice-free conditions in the Northern Hemisphere and warmer-than-modern temperatures on the continents. Here we present quantitative geochemical sea surface temperature estimates from the Miocene mid-latitude North Pacific Ocean, and show that oceanic warmth persisted throughout the interval of low p(co(2)) ∼12-5 Myr ago. We also present new stable isotope measurements from the western equatorial Pacific that, in conjunction with previously published data, reveal a long-term trend of thermocline shoaling in the equatorial Pacific since ∼13 Myr ago. We propose that a relatively deep global thermocline, reductions in low-latitude gradients in sea surface temperature, and cloud and water vapour feedbacks may help to explain the warmth of the late Miocene. Additional shoaling of the thermocline after 5 Myr ago probably explains the stronger coupling between p(co(2)), sea surface temperatures and climate that is characteristic of the more recent Pliocene and Pleistocene epochs.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/analysis , Global Warming/history , Hot Temperature , Seawater , Carbon Dioxide/chemistry , Foraminifera/chemistry , Geologic Sediments/chemistry , Global Warming/statistics & numerical data , History, Ancient , Oceans and Seas , Oxygen Isotopes/analysis , Seawater/analysis , Seawater/chemistry , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...