Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 10(18): 5654-5661, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31483664

ABSTRACT

Quantum coherence in condensed-phase electronic resonance energy transfer (RET) is described within the context of quantum electrodynamics (QED) theory. Mediating dressed virtual photons (polaritons) are explicitly incorporated into the treatment, and coherence is understood within the context of interfering Feynman pathways connecting the initial and final states for the RET process. The model investigated is that of an oriented three-body donor, acceptor, and mediator RET system embedded within a dispersive and absorbing polarizable medium. We show how quantum coherence can significantly enhance the rate of RET and give a rigorous picture for subsequent decoherence that is driven by both phase and amplitude damping. Energy-conserving phase damping occurs as a result of geometric and dispersive effects and is associated with destructive interference between Feynman pathways. Dissipative amplitude damping, on the other hand, is attributed to vibronic relaxation and absorptivity of the medium and can be understood as virtual photons (polaritons) leaking into the environment. This model offers insights into the emergence of coherence and subsequent decoherence for energy transfer in photosynthetic systems.

2.
Phys Rev Lett ; 118(13): 133602, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28409956

ABSTRACT

The achievement of optimum conversion efficiency in conventional spontaneous parametric down-conversion requires consideration of quantum processes that entail multisite electrodynamic coupling, actively taking place within the conversion material. The physical mechanism, which operates through virtual photon propagation, provides for photon pairs to be emitted from spatially separated sites of photon interaction; occasionally pairs are produced in which each photon emerges from a different point in space. The extent of such nonlocalized generation is influenced by individual variations in both distance and phase correlation. Mathematical analysis of the global contributions from this mechanism provides a quantitative measure for a degree of positional uncertainty in the origin of down-converted emission.

3.
J Chem Phys ; 143(12): 124301, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26429005

ABSTRACT

Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1(3), does not account for all experimental observations. The relevant results emerge upon extending the theory to include E1(2)M1 and E1(2)E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1(2)E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.

4.
J Chem Phys ; 139(1): 014107, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23822293

ABSTRACT

In many of the materials and systems in which resonance energy transfer occurs, the individual chromophores are embedded within a superstructure of significantly different chemical composition. In accounting for the influence of the surrounding matter, the simplest and most widely used representation is commonly cast in terms of a dependence on local refractive index. However, such a depiction is a significant oversimplification, as it fails to register the electronic and local geometric effects of material specifically in the vicinity of the chromophores undergoing energy transfer. The principal objective of this study is to construct a detailed picture of how individual photon interaction events are modified by vicinal, non-absorbing chromophores. A specific aim is to discover what effects arise when input excitation is located in the neighborhood of other chromophores that have a slightly shorter wavelength of absorption; this involves a passive effect exerted on the transfer of energy at wavelengths where they themselves display no significant absorption. The theory is based on a thorough quantum electrodynamical analysis that allows the identification of specific optical and electronic chromophore attributes to expedite or inhibit electronic energy transfer. The Clausius-Mossotti dispersion relationship is then deployed to elicit a dependence on the bulk refractive index of the surroundings. A distinction is drawn between cases in which the influence on the electromagnetic coupling between the donor and the acceptor is primarily due to the static electric field produced by a polar medium, and converse cases in which the mechanism for modifying the form of energy transfer involves the medium acquiring an induced electric dipole. The results provide insights into the detailed quantum mechanisms that operate in multi-chromophore systems, pointing to factors that contribute to the optimization of photosystem characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...