Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 9: 2197, 2018.
Article in English | MEDLINE | ID: mdl-30279682

ABSTRACT

Escherichia coli swarm on semi-solid surfaces with the aid of flagella. It has been hypothesized that swarmer cells overcome the increased viscous drag near surfaces by developing higher flagellar thrust and by promoting surface wetness with the aid of a flagellar switch. The switch enables reversals between clockwise (CW) and counterclockwise (CCW) directions of rotation of the flagellar motor. Here, we measured the behavior of flagellar motors in swarmer cells. Results indicated that although the torque was similar to that in planktonic cells, the tendency to rotate CCW was higher in swarmer cells. This suggested that swarmers likely have a smaller pool of phosphorylated CheY. Results further indicated that the upregulation of the flagellin gene was not critical for flagellar thrust or swarming. Consistent with earlier reports, moisture added to the swarm surface restored swarming in a CCW-only mutant, but not in a FliG mutant that rotated motors CW-only (FliGCW). Fluorescence assays revealed that FliGCW cells grown on agar surfaces carried fewer flagella than planktonic FliGCW cells. The surface-dependent reduction in flagella correlated with a reduction in the number of putative flagellar preassemblies. These results hint toward a possibility that the conformational dynamics of switch proteins play a role in the proper assembly of flagellar complexes and flagellar export, thereby aiding bacterial swarming.

2.
Sci Rep ; 7(1): 5565, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28717192

ABSTRACT

The stator-complex in the bacterial flagellar motor is responsible for surface-sensing. It remodels in response to perturbations in viscous loads, recruiting additional stator-units as the load increases. Here, we tested a hypothesis that the amount of torque generated by each stator-unit modulates its association with the rotor. To do this, we measured stator-binding to the rotor in mutants in which motors reportedly develop lower torque compared to wildtype motors. First, we employed a strain lacking fliL. Contrary to earlier reports, measurements indicated that the torque generated by motors in the fliL strain was similar to that in the wildtype, at high loads. In these motors, stator-binding was unchanged. Next, experiments with a paralyzed strain indicated that the stator-binding was measurably weaker when motors were unable to generate torque. An analytical model was developed that incorporated an exponential dependence of the unit's dissociation rate on the force delivered to the rotor. The model provided accurate fits to measurements of stator-rotor binding over a wide range of loads. Based on these results, we propose that the binding of each stator-unit is enhanced by the force it develops. Furthermore, FliL does not play a significant role in motor function in E. coli.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/cytology , Escherichia coli/physiology , Membrane Proteins/metabolism , Escherichia coli Proteins/genetics , Flagella/physiology , Membrane Proteins/genetics , Torque
3.
J Vis Exp ; (119)2017 01 18.
Article in English | MEDLINE | ID: mdl-28190023

ABSTRACT

The role of flagellar motors in bacterial motility and chemotaxis is well-understood. Recent discoveries suggest that flagellar motors are able to remodel in response to a variety of environmental stimuli and are among the triggers for surface colonization and infections. The precise mechanisms by which motors remodel and promote cellular adaptation likely depend on key motor attributes. The photomultiplier-based bead-tracking technique presented here enables accurate biophysical characterization of motor functions, including adaptations in motor speeds and switch-dynamics. This approach offers the advantage of real-time tracking and the ability to probe motor behavior over extended durations. The protocols discussed can be readily extended to study flagellar motors in a variety of bacterial species.


Subject(s)
Bacteria , Bacterial Proteins/physiology , Flagella/physiology , Molecular Motor Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...