Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 65(3): 406-418, 2019 03.
Article in English | MEDLINE | ID: mdl-30647123

ABSTRACT

BACKGROUND: Clinical practice guidelines recommend estimation of glomerular filtration rate (eGFR) using validated equations based on serum creatinine (eGFRcr), cystatin C (eGFRcys), or both (eGFRcr-cys). However, when compared with the measured GFR (mGFR), only eGFRcr-cys meets recommended performance standards. Our goal was to develop a more accurate eGFR method using a panel of metabolites without creatinine, cystatin C, or demographic variables. METHODS: An ultra-performance liquid chromatography-tandem mass spectrometry assay for acetylthreonine, phenylacetylglutamine, pseudouridine, and tryptophan was developed, and a 20-day, multiinstrument analytical validation was conducted. The assay was tested in 2424 participants with mGFR data from 4 independent research studies. A new GFR equation (eGFRmet) was developed in a random subset (n = 1615) and evaluated in the remaining participants (n = 809). Performance was assessed as the frequency of large errors [estimates that differed from mGFR by at least 30% (1 - P30); goal <10%]. RESULTS: The assay had a mean imprecision (≤10% intraassay, ≤6.9% interassay), linearity over the quantitative range (r 2 > 0.98), and analyte recovery (98.5%-113%). There was no carryover, no interferences observed, and analyte stability was established. In addition, 1 - P30 in the validation set for eGFRmet (10.0%) was more accurate than eGFRcr (13.1%) and eGFRcys (12.0%) but not eGFRcr-cys (8.7%). Combining metabolites, creatinine, cystatin C, and demographics led to the most accurate equation (7.0%). Neither equation had substantial variation among population subgroups. CONCLUSIONS: The new eGFRmet equation could serve as a confirmatory test for GFR estimation.


Subject(s)
Chromatography, Liquid/methods , Glomerular Filtration Rate , Tandem Mass Spectrometry/methods , Adult , Aged , Aged, 80 and over , Female , Glutamine/analogs & derivatives , Glutamine/blood , Humans , Male , Middle Aged , Pseudouridine/blood , Reproducibility of Results , Threonine/analogs & derivatives , Threonine/blood , Tryptophan/blood
2.
Org Lett ; 20(7): 2100-2103, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29578721

ABSTRACT

The chemical structure of x11564, a new endogenous organosulfur metabolite, was elucidated by de novo interpretation of mass spectrometric data. The structure was confirmed by comparison to a synthetic standard. Metabolite x11564 is structurally related to intermediates in the methionine salvage pathway.

3.
Metabolomics ; 13(8): 92, 2017.
Article in English | MEDLINE | ID: mdl-28706470

ABSTRACT

INTRODUCTION: A major bottleneck in metabolomic studies is metabolite identification from accurate mass spectrometric data. Metabolite x17299 was identified in plasma as an unknown in a metabolomic study using a compound-centric approach where the associated ion features of the compound were used to determine the true molecular mass. OBJECTIVES: The aim of this work is to elucidate the chemical structure of x17299, a new compound by de novo interpretation of mass spectrometric data. METHODS: An Orbitrap Elite mass spectrometer was used for acquisition of mass spectra up to MS4 at high resolution. Synthetic standards of N,N,N-trimethyl-l-alanyl-l-proline betaine (l,l-TMAP), a diastereomer, and an enantiomer were chemically prepared. RESULTS: The planar structure of x17299 was successfully proposed by de novo mechanistic interpretation of mass spectrometric data without any laborious purification and nuclear magnetic resonance spectroscopic analysis. The proposed structure was verified by deuterium exchanged mass spectrometric analysis and confirmed by comparison to a synthetic standard. Relative configuration of x17299 was determined by direct chromatographic comparison to a pair of synthetic diastereomers. Absolute configuration was assigned after derivatization of x17299 with a chiral auxiliary group followed by its chromatographic comparison to a pair of synthetic standards. CONCLUSION: The chemical structure of metabolite x17299 was determined to be l,l-TMAP.

4.
Article in English | MEDLINE | ID: mdl-28029544

ABSTRACT

Early detection of insulin resistance (IR) and/or impaired glucose tolerance (IGT) is crucial for delaying and preventing the progression toward type 2 diabetes. We recently developed and validated a straightforward metabolite-based test for the assessment of IR and IGT in a single LC-MS/MS method. Plasma samples were diluted with isotopically-labeled internal standards and extracted by simple protein precipitation. The extracts were analyzed by LC-MS/MS for the quantitation of 2-hydroxybutyric acid (0.500-40.0µg/mL), 3-hydroxybutyric acid (1.00-80.0µg/mL), 4-methyl-2-oxopentanoic acid (0.500-20.0µg/mL), 1-linoleoyl-2-hydroxy-sn-glycero-3-phosphocholine (2.50-100µg/mL), oleic acid (10.0-400µg/mL), pantothenic acid (0.0100-0.800µg/mL), and serine (2.50-100µg/mL). Liquid chromatography was carried out on a reversed phase column with a run time of 3.1min and the mass spectrometer operated in negative MRM mode. Method validation was performed on three identical LC-MS/MS systems with five runs each. Sufficient linearity (R2>0.99) was observed for all the analytes over the ranges. The imprecision (CVs) was found to be less than 5.5% for intra-run and less than 5.8% for inter-run for the seven analytes. The analytical recovery was determined to be between 96.3 and 103% for the seven analytes. This fast and robust method has subsequently been used for patient sample analysis for the assessment of IR and IGT.

5.
EJIFCC ; 26(2): 92-104, 2015 Mar.
Article in English | MEDLINE | ID: mdl-27683485

ABSTRACT

INTRODUCTION: There is a critical need to develop clinical laboratory assays that provide risk assessment for men at elevated risk for prostate cancer, and once diagnosed, could further identify those men with clinically significant disease. METHODS: Recent advancements in analytical instrumentation have enabled mass spectrometry-based metabolomics methodologies. Further advancements in chromatographic techniques have facilitated high throughput, quantitative assays for a broad spectrum of biochemicals. RESULTS: Screening metabolomics techniques have been applied to biospecimens from large cohorts of men comparing those individuals with prostate cancer to those with no evidence of malignancy. Work beginning in tissues has identified biochemical profiles that correlate with disease and disease severity, including tumor grade and stage. Some of these metabolic abnormalities, such as dramatic elevations in sarcosine, have been found to translate into biological fluids, especially blood and urine, which can be sampled in a minimally invasive manner. DISCUSSION: The differential abundances of these tumor-associated metabolites have been found to improve the performance of clinical prognostic/diagnostic tools. CONCLUSION: The outlook is bright for metabolomic technology to address clinical diagnostic needs for prostate cancer patient management. Early validation of specific clinical tests provides a preview of further successes in this area. Metabolomics has shown its utility to complement and augment traditional clinical approaches as well as emerging genomic, transcriptomic and proteomic methodologies, and is expected to play a key role in the precision medicine-based management of the prostate cancer patient.

SELECTION OF CITATIONS
SEARCH DETAIL
...