Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003684

ABSTRACT

Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.


Subject(s)
Fear , Animals , Female , Male , Mice , Corticosterone/analysis , Extinction, Psychological , Membrane Transport Proteins , Signal Transduction
2.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37693400

ABSTRACT

Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.

3.
PLoS One ; 18(7): e0286221, 2023.
Article in English | MEDLINE | ID: mdl-37440571

ABSTRACT

A hallmark symptom of many anxiety disorders, and multiple neuropsychiatric disorders more broadly, is generalization of fearful responses to non-fearful stimuli. Anxiety disorders are often comorbid with cardiovascular diseases. One established, and modifiable, risk factor for cardiovascular diseases is salt intake. Yet, investigations into how excess salt consumption affects anxiety-relevant behaviors remains little explored. Moreover, no studies have yet assessed how high salt intake influences generalization of fear. Here, we used adult C57BL/6J mice of both sexes to evaluate the influence of two or six weeks of high salt consumption (4.0% NaCl), compared to controls (0.4% NaCl), on contextual fear acquisition, expression, and generalization. Further, we measured osmotic and physiological stress by quantifying serum osmolality and corticosterone levels, respectively. Consuming excess salt did not influence contextual fear acquisition nor discrimination between the context used for training and a novel, neutral context when training occurred 48 prior to testing. However, when a four week delay between training and testing was employed to induce natural fear generalization processes, we found that high salt intake selectively increases contextual fear generalization in females, but the same diet reduces contextual fear generalization in males. These sex-specific effects were independent of any changes in serum osmolality nor corticosterone levels, suggesting the behavioral shifts are a consequence of more subtle, neurophysiologic changes. This is the first evidence of salt consumption influencing contextual fear generalization, and adds information about sex-specific effects of salt that are largely missing from current literature.


Subject(s)
Cardiovascular Diseases , Sodium Chloride, Dietary , Male , Mice , Animals , Female , Sodium Chloride, Dietary/pharmacology , Corticosterone/pharmacology , Sodium Chloride/pharmacology , Mice, Inbred C57BL , Fear/psychology
4.
Cells ; 11(12)2022 06 09.
Article in English | MEDLINE | ID: mdl-35741002

ABSTRACT

Plasma membrane monoamine transporter (PMAT, Slc29a4) transports monoamine neurotransmitters, including dopamine and serotonin, faster than more studied monoamine transporters, e.g., dopamine transporter (DAT), or serotonin transporter (SERT), but with ~400-600-fold less affinity. A considerable challenge in understanding PMAT's monoamine clearance contributions is that no current drugs selectively inhibit PMAT. To advance knowledge about PMAT's monoamine uptake role, and to circumvent this present challenge, we investigated how drugs that selectively block DAT/SERT influence behavioral readouts in PMAT wildtype, heterozygote, and knockout mice of both sexes. Drugs typically used as antidepressants (escitalopram, bupropion) were administered acutely for readouts in tail suspension and locomotor tests. Drugs with psychostimulant properties (cocaine, D-amphetamine) were administered repeatedly to assess initial locomotor responses plus psychostimulant-induced locomotor sensitization. Though we hypothesized that PMAT-deficient mice would exhibit augmented responses to antidepressant and psychostimulant drugs due to constitutively attenuated monoamine uptake, we instead observed sex-selective responses to antidepressant drugs in opposing directions, and subtle sex-specific reductions in psychostimulant-induced locomotor sensitization. These results suggest that PMAT functions differently across sexes, and support hypotheses that PMAT's monoamine clearance contribution emerges when frontline transporters (e.g., DAT, SERT) are absent, saturated, and/or blocked. Thus, known human polymorphisms that reduce PMAT function could be worth investigating as contributors to varied antidepressant and psychostimulant responses.


Subject(s)
Antidepressive Agents , Cocaine , Membrane Transport Proteins , Animals , Antidepressive Agents/pharmacology , Biological Transport , Cocaine/pharmacology , Female , Male , Membrane Transport Proteins/metabolism , Mice , Mice, Knockout , Serotonin/metabolism
5.
Ann Hum Genet ; 86(4): 218-223, 2022 07.
Article in English | MEDLINE | ID: mdl-35574658

ABSTRACT

Despite the robustness of DRD4 polymorphism associations with brain-based behavioral characteristics in candidate gene research, investigations have minimally explored associations between these polymorphisms and emotional responses. In particular, the prevalent single nucleotide polymorphism (SNP) -521C/T (rs1800955) in the promoter region of DRD4 remains unexplored relative to emotions. Here, two independent samples were evaluated using different emotion elicitation tasks involving social stimuli: Study 1 (N = 120) evoked positive and negative emotional responses to validated film clips; Study 2 (N = 122) utilized Cyberball to simulate social rejection and acceptance. Across studies, C/C individuals self-reported higher mean positive affect scores using Likert scales versus T carrier individuals, selectively when presented with neutral or negative (but not positive) social stimuli. The consistent findings across these two studies supports a functional consequence of this DRD4 SNP on emotion processing during changing social contexts. Continued investigation will help clarify if a C/C genotype enhances positive emotions under negative circumstances, or if the presence of the T allele reduces positive emotions, and how rs1800955 behavioral associations might generalize across different demographics. Future studies could also reveal if this SNP interacts with other changing environmental conditions to affect emotional responses, such as social limitations during the COVID-19 pandemic.


Subject(s)
Polymorphism, Single Nucleotide , Receptors, Dopamine D4 , Social Interaction , Alleles , COVID-19 , Genotype , Humans , Pandemics , Receptors, Dopamine D4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...