Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 43(40): 14976-82, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-24970298

ABSTRACT

As co-catalyst materials, metal nanoparticles (NPs) play crucial roles in heterogeneous photocatalysis. The photocatalytic performance strongly relies on the physical properties (i.e., composition, microstructure, and surface impurities) of the metal NPs. Here we report a convenient chemical vapour impregnation (CVI) approach for the deposition of monometallic-, alloyed, and core-shell structured metal co-catalysts onto the TiO2 photocatalyst. The as-synthesised metal NPs are highly dispersed on the support and show narrow size distributions, which suit photocatalysis applications. More importantly, the surfaces of the as-synthesised metal NPs are free of protecting ligands, enabling the photocatalysts to be ready to use without further treatment. The effect of the metal identity, the alloy chemical composition, and the microstructure on the photocatalytic performance has been investigated for hydrogen production and phenol decomposition. Whilst the photocatalytic H2 production performance can be greatly enhanced by using the core-shell structured co-catalyst (Pdshell-Aucore and Ptshell-Aucore), the Ptshell-Aucore modified TiO2 yields enhanced quantum efficiency but a reduced effective decomposition of phenol to CO2 compared to that of the monometallic counterparts. We consider the CVI approach provides a feasible and elegant process for the decoration of photocatalyst materials.

2.
ACS Nano ; 8(1): 957-69, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24341675

ABSTRACT

The use of precious metals in heterogeneous catalysis relies on the preparation of small nanoparticles that are stable under reaction conditions. To date, most conventional routes used to prepare noble metal nanoparticles have drawbacks related to surface contamination, particle agglomeration, and reproducibility restraints. We have prepared titania-supported palladium (Pd) and platinum (Pt) catalysts using a simplified vapor deposition technique termed chemical vapor impregnation (CVI) that can be performed in any standard chemical laboratory. These materials, composed of nanoparticles typically below 3 nm in size, show remarkable activity under mild conditions for oxidation and hydrogenation reactions of industrial importance. We demonstrate the preparation of bimetallic Pd-Pt homogeneous alloy nanoparticles by this new CVI method, which show synergistic effects in toluene oxidation. The versatility of our CVI methodology to be able to tailor the composition and morphology of supported nanoparticles in an easily accessible and scalable manner is further demonstrated by the synthesis of Pdshell-Aucore nanoparticles using CVI deposition of Pd onto preformed Au nanoparticles supported on titania (prepared by sol immobilization) in addition to the presence of monometallic Au and Pd nanoparticles.

3.
Faraday Discuss ; 162: 365-78, 2013.
Article in English | MEDLINE | ID: mdl-24015595

ABSTRACT

Trimetallic Au-Pd-Pt nanoparticles have been supported on activated carbon by the sol-immobilisation method. They are found to be highly active and selective catalysts for the solvent-free aerobic oxidation of benzyl alcohol. The addition of Pt promotes the selectivity to the desired product benzaldehyde at the expense of toluene formation. Detailed aberration corrected STEM-XEDS analysis confirmed that the supported particles are indeed Au-Pd-Pt ternary alloys, but also identified composition fluctuations from particle-to-particle which vary systematically with nanoparticle size.

4.
J Am Chem Soc ; 135(30): 11087-99, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23802759

ABSTRACT

Iron and copper containing ZSM-5 catalysts are effective for the partial oxidation of ethane with hydrogen peroxide giving combined oxygenate selectivities and productivities of up to 95.2% and 65 mol kgcat(-1) h(-1), respectively. High conversion of ethane (ca. 56%) to acetic acid (ca. 70% selectivity) can be observed. Detailed studies of this catalytic system reveal a complex reaction network in which the oxidation of ethane gives a range of C2 oxygenates, with sequential C-C bond cleavage generating C1 products. We demonstrate that ethene is also formed and can be subsequently oxidized. Ethanol can be directly produced from ethane, and does not originate from the decomposition of its corresponding alkylperoxy species, ethyl hydroperoxide. In contrast to our previously proposed mechanism for methane oxidation over similar zeolite catalysts, the mechanism of ethane oxidation involves carbon-based radicals, which lead to the high conversions we observe.

6.
Chemistry ; 18(49): 15735-45, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23150452

ABSTRACT

The partial oxidation of methane to methanol presents one of the most challenging targets in catalysis. Although this is the focus of much research, until recently, approaches had proceeded at low catalytic rates (<10 h(-1)), not resulted in a closed catalytic cycle, or were unable to produce methanol with a reasonable selectivity. Recent research has demonstrated, however, that a system composed of an iron- and copper-containing zeolite is able to catalytically convert methane to methanol with turnover frequencies (TOFs) of over 14,000 h(-1) by using H(2)O(2) as terminal oxidant. However, the precise roles of the catalyst and the full mechanistic cycle remain unclear. We hereby report a systematic study of the kinetic parameters and mechanistic features of the process, and present a reaction network consisting of the activation of methane, the formation of an activated hydroperoxy species, and the by-production of hydroxyl radicals. The catalytic system in question results in a low-energy methane activation route, and allows selective C(1)-oxidation to proceed under intrinsically mild reaction conditions.

9.
Dalton Trans ; 39(38): 8945-56, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20859569

ABSTRACT

The synthesis and subsequent spectroscopic, electrochemical, photophysical and computational characterisation of a series of heteroleptic Cu(I) complexes of general formula: [CuPOP{4,4'(R)-bipyridyl}][BF(4)] and [CuPOP{4,4',6,6'(R)-bipyridyl}][BF(4)] is described (POP = bis{2-(diphenylphosphanyl)phenyl} ether; R = Me, CO(2)H, CO(2)Et. The steric constraint imposed by the POP ligand can impede distortion towards square planar geometry upon MLCT excitation or oxidation and this is explored in the context of varying substituents on the bipyridyl ligand. The insight gained opens new avenues for design of functional Cu(I) systems suitable for photophysical and photoelectrochemical applications such as sensitisers for dye-sensitised solar cells (DSSCs).

SELECTION OF CITATIONS
SEARCH DETAIL
...