Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Nano ; 17(24): 24919-24935, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38051272

ABSTRACT

Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (h-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice. Animals were exposed by single oropharyngeal aspiration to h-BN or BNNTs. On days 1, 7, and 28, bronchoalveolar lavage (BAL) fluids and lungs were collected. On one hand, adverse effects on lungs were evaluated using various approaches (e.g., immune response, histopathology, tissue remodeling, and genotoxicity). On the other hand, material deposition and clearance from the lungs were assessed. Two-dimensional h-BN did not cause any significant immune response or lung damage, although the presence of materials was confirmed by Raman spectroscopy. In addition, the low aspect ratio h-BN nanosheets were internalized rapidly by phagocytic cells present in alveoli, resulting in efficient clearance from the lungs. In contrast, high aspect ratio BNNTs caused a strong and long-lasting inflammatory response, characterized by sustained inflammation up to 28 days after exposure and the activation of both innate and adaptive immunity. Moreover, the presence of granulomatous structures and an indication of ongoing fibrosis as well as DNA damage in the lung parenchyma were evidenced with these materials. Concurrently, BNNTs were identified in lung sections for up to 28 days, suggesting long-term biopersistence, as previously demonstrated for other high aspect ratio nanomaterials with poor lung clearance such as multiwalled carbon nanotubes (MWCNTs). Overall, we reveal the safer toxicological profile of BN-based two-dimensional nanosheets in comparison to their nanotube counterparts. We also report strong similarities between BNNTs and MWCNTs in lung response, emphasizing their high aspect ratio as a major driver of their toxicity.


Subject(s)
Nanostructures , Nanotubes, Carbon , Mice , Animals , Nanotubes, Carbon/toxicity , Nanostructures/toxicity , Lung/pathology , Boron Compounds/toxicity , Boron Compounds/chemistry
2.
Small ; 19(39): e2301201, 2023 09.
Article in English | MEDLINE | ID: mdl-37264768

ABSTRACT

Graphene-based materials (GBMs) have promising applications in various sectors, including pulmonary nanomedicine. Nevertheless, the influence of GBM physicochemical characteristics on their fate and impact in lung has not been thoroughly addressed. To fill this gap, the biological response, distribution, and bio-persistence of four different GBMs in mouse lungs up to 28 days after single oropharyngeal aspiration are investigated. None of the GBMs, varying in size (large versus small) and carbon to oxygen ratio as well as thickness (few-layers graphene (FLG) versus thin graphene oxide (GO)), induce a strong pulmonary immune response. However, recruited neutrophils internalize nanosheets better and degrade GBMs faster than macrophages, revealing their crucial role in the elimination of small GBMs. In contrast, large GO sheets induce more damages due to a hindered degradation and long-term persistence in macrophages. Overall, small dimensions appear to be a leading feature in the design of safe GBM pulmonary nanovectors due to an enhanced degradation in phagocytes and a faster clearance from the lungs for small GBMs. Thickness also plays an important role, since decreased material loading in alveolar phagocytes and faster elimination are found for FLGs compared to thinner GOs. These results are important for designing safer-by-design GBMs for biomedical application.


Subject(s)
Graphite , Animals , Mice , Graphite/pharmacology , Lung , Macrophages
3.
Part Fibre Toxicol ; 19(1): 62, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131347

ABSTRACT

BACKGROUND: A key aspect of any new material safety assessment is the evaluation of their in vivo genotoxicity. Graphene oxide (GO) has been studied for many promising applications, but there are remaining concerns about its safety profile, especially after inhalation. Herein we tested whether GO lateral dimension, comparing micrometric (LGO) and nanometric (USGO) GO sheets, has a role in the formation of DNA double strand breaks in mouse lungs. We used spatial resolution and differential cell type analysis to measure DNA damages in both epithelial and immune cells, after either single or repeated exposure. RESULTS: GO induced DNA damages were size and dose dependent, in both exposure scenario. After single exposure to a high dose, both USGO and LGO induced significant DNA damage in the lung parenchyma, but only during the acute phase response (p < 0.05 for USGO; p < 0.01 for LGO). This was followed by a fast lung recovery at day 7 and 28 for both GOs. When evaluating the chronic impact of GO after repeated exposure, only a high dose of LGO induced long-term DNA damages in lung alveolar epithelia (at 84 days, p < 0.05). Regardless of size, low dose GO did not induce any significant DNA damage after repeated exposure. A multiparametric correlation analysis of our repeated exposure data revealed that transient or persistent inflammation and oxidative stress were associated to either recovery or persistent DNA damages. For USGO, recovery from DNA damage was correlated to efficient recovery from acute inflammation (i.e., significant secretion of SAA3, p < 0.001; infiltration of neutrophils, p < 0.01). In contrast, the persistence of LGO in lungs was associated to a long-lasting presence of multinucleated macrophages (up to 84 days, p < 0.05), an underlying inflammation (IL-1α secretion up to 28 days, p < 0.05) and the presence of persistent DNA damages at 84 days. CONCLUSIONS: Overall these results highlight the importance of the exposure scenario used. We showed that LGO was more genotoxic after repeated exposure than single exposure due to persistent lung inflammation. These findings are important in the context of human health risk assessment and toward establishing recommendations for a safe use of graphene based materials in the workplace.


Subject(s)
Graphite , Animals , DNA , DNA Damage , Graphite/toxicity , Humans , Inflammation/chemically induced , Lung , Mice
4.
J Hazard Mater ; 435: 129053, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35650742

ABSTRACT

Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.


Subject(s)
Graphite , Animals , Graphite/toxicity , Mice , Plastics
5.
Adv Sci (Weinh) ; 9(11): e2104559, 2022 04.
Article in English | MEDLINE | ID: mdl-35166457

ABSTRACT

Graphene has drawn a lot of interest in the material community due to unique physicochemical properties. Owing to a high surface area to volume ratio and free oxygen groups, the oxidized derivative, graphene oxide (GO) has promising potential as a drug delivery system. Here, the lung tolerability of two distinct GO varying in lateral dimensions is investigated, to reveal the most suitable candidate platform for pulmonary drug delivery. Following repeated chronic pulmonary exposure of mice to GO sheet suspensions, the innate and adaptive immune responses are studied. An acute and transient influx of neutrophils and eosinophils in the alveolar space, together with the replacement of alveolar macrophages by interstitial ones and a significant activation toward anti-inflammatory subsets, are found for both GO materials. Micrometric GO give rise to persistent multinucleated macrophages and granulomas. However, neither adaptive immune response nor lung tissue remodeling are induced after exposure to micrometric GO. Concurrently, milder effects and faster tissue recovery, both associated to a faster clearance from the respiratory tract, are found for nanometric GO, suggesting a greater lung tolerability. Taken together, these results highlight the importance of dimensions in the design of biocompatible 2D materials for pulmonary drug delivery system.


Subject(s)
Graphite , Adaptive Immunity , Animals , Biocompatible Materials/chemistry , Graphite/chemistry , Graphite/pharmacology , Lung , Macrophages , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...