Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 141(1): 431-440, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30512942

ABSTRACT

Thermolysis of a pair of dibenzo-7-phosphanorbornadiene compounds is shown to lead to differing behaviors: phosphinidene sulfide release and formation of amorphous P2S. These compounds, tBuP(S)A (1, A = C14H10 or anthracene; 59% isol. yield) and HP(S)A (2; 63%), are available through thionation of tBuPA and the new secondary phosphine HPA (5), prepared from Me2NPA and DIBAL-H in 50% yield. Phosphinidene sulfide [ tBuP═S] transfer is shown to proceed efficiently from 1 to 2,3-dimethyl-1,3-butadiene to form Diels-Alder product 3 with a zero-order dependence on diene. Platinum complex (Ph3P)2Pt(η2- tBuPS) (4, 47%) is also accessed from 1 and structurally characterized. In contrast, heating parent species 2 (3 h, 135 °C) under vacuum instead produces an insoluble, nonvolatile yellow residual material 6 of composition P2S that displays semiconductor properties with an optical band gap of 2.4 eV. Material 6 obtained in this manner from molecular precursor 2 is in a poorly characterized portion of the phosphorus-sulfur phase diagram and has therefore been subjected to a range of spectroscopic techniques to gain structural insight. X-ray spectroscopic and diffraction techniques, including Raman, XANES, EXAFS, and PDF, reveal 6 to have similarities with related compounds including P4S3, Hittorf's violet phosphorus. Various possible structures have been explored as well using quantum chemical calculations under the constraint that each phosphorus atom is trivalent with no terminal sulfide groups, and each sulfur atom is divalent. The structural conclusions are supported by data from phosphorus-31 magic angle spinning (MAS) solid state NMR spectroscopy, bolstering the structural comparisons to other phosphorus-sulfur systems while excluding the formulation of P2S as a simple mixture of P4S3 and phosphorus.


Subject(s)
Anthracenes/chemistry , Phosphorus/chemistry , Sulfides/chemistry , Sulfur/chemistry , Color , Models, Molecular , Molecular Conformation
2.
J Phys Chem A ; 122(1): 258-268, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29286244

ABSTRACT

Reactions of the simplest Criegee intermediate (CH2OO) with a series of alcohols have been studied in a flash photolysis flow reactor. Laser photolysis of diiodomethane at 355 nm in the presence of molecular oxygen was used to produce CH2OO, and the absolute number densities were determined as a function of delay time from analysis of broadband transient absorption spectra obtained using a pulsed LED. The kinetics for the reactions of CH2OO with methanol, ethanol, and 2-propanol were measured under pseudo-first-order conditions at 295 K, yielding rate constants of (1.4 ± 0.4) × 10-13 cm3 s-1, (2.3 ± 0.6) × 10-13 cm3 s-1, and (1.9 ± 0.5) × 10-13 cm3 s-1, respectively. Complementary ab initio calculations were performed at the CCSD(T)/aug-cc-pVTZ//CCSD/cc-pVDZ level of theory to characterize stationary points on the reaction enthalpy and free energy surfaces and to elucidate the thermochemistry and mechanisms. The reactions proceed over free energy barriers of ∼8 kcal mol-1 to form geminal alkoxymethyl hydroperoxides: methoxymethyl hydroperoxide (MMHP), ethoxymethyl hydroperoxide (EMHP), and isopropoxymethyl hydroperoxide (PMHP). The experimental and theoretical results are compared to reactions of CH2OO with other hydroxylic compounds, such as water and carboxylic acids, and trends in reactivity are discussed.

3.
Phys Chem Chem Phys ; 19(46): 31039-31053, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29160321

ABSTRACT

Photolysis of geminal diiodoalkanes in the presence of molecular oxygen has become an established route to the laboratory production of several Criegee intermediates, and such compounds also have marine sources. Here, we explore the role that the trihaloalkane, chlorodiiodomethane (CHI2Cl), may play as a photolytic precursor for the chlorinated Criegee intermediate ClCHOO. CHI2Cl has been synthesized and its UV absorption spectrum measured; relative to that of CH2I2 the spectrum is shifted to longer wavelength and the photolysis lifetime is calculated to be less than two minutes. The photodissociation dynamics have been investigated using DC slice imaging, probing ground state I and spin-orbit excited I* atoms with 2 + 1 REMPI and single-photon VUV ionization. Total translational energy distributions are bimodal for I atoms and unimodal for I*, with around 72% of the available energy partitioned in to the internal degrees of freedom of the CHICl radical product, independent of photolysis wavelength. A bond dissociation energy of D0 = 1.73 ± 0.11 eV is inferred from the wavelength dependence of the translational energy release, which is slightly weaker than typical C-I bonds. Analysis of the photofragment angular distributions indicate dissociation is prompt and occurs primarily via transitions to states of A'' symmetry. Complementary high-level MRCI calculations, including spin-orbit coupling, have been performed to characterize the excited states and confirm that states of A'' symmetry with highly mixed singlet and triplet character are predominantly responsible for the absorption spectrum. Transient absorption spectroscopy has been used to measure the absorption spectrum of ClCHOO produced from the reaction of CHICl with O2 over the range 345-440 nm. The absorption spectrum, tentatively assigned to the syn conformer, is at shorter wavelengths relative to that of CH2OO and shows far weaker vibrational structure.

4.
Angew Chem Int Ed Engl ; 55(35): 10419-22, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27440012

ABSTRACT

Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2 OO, with two inorganic acids, HCl and HNO3 , both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2 OO with HCl and HNO3 have rate constants of 4.6×10(-11)  cm(3) s(-1) and 5.4×10(-10)  cm(3) s(-1) , respectively. Complementary quantum-chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.

5.
Phys Chem Chem Phys ; 18(16): 10941-6, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27040614

ABSTRACT

The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed.

6.
Phys Chem Chem Phys ; 17(48): 32539-46, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26595457

ABSTRACT

Carbonyl oxides, or Criegee intermediates, are formed from the gas phase ozonolysis of alkenes and play a pivotal role in night-time and urban area atmospheric chemistry. Significant discrepancies exist among measurements of the strong B ̃(1)A'-X ̃(1)A' electronic transition of the simplest Criegee intermediate, CH2OO in the visible/near-UV. We report room temperature spectra of the B ̃(1)A'-X ̃(1)A' electronic absorption band of CH2OO acquired at higher resolution using both single-pass broadband absorption and cavity ring-down spectroscopy. The new absorption spectra confirm the vibrational structure on the red edge of the band that is absent from ionization depletion measurements. The absolute absorption cross sections over the 362-470 nm range are in good agreement with those reported by Ting et al. Broadband absorption spectra recorded over the temperature range of 276-357 K were identical within their mutual uncertainties, confirming that the vibrational structure is not due to hot bands.

7.
J Phys Chem A ; 119(34): 8981-90, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26267481

ABSTRACT

Cavity ring-down spectroscopy was used to study the kinetics of formation of IO radicals in the reaction of CH2I + O2 in a flow cell at 52 ± 3 Torr total pressure of N2 diluent and a temperature of 295 K. CH2I was produced by photolysis of CH2I2 at 355 nm and IO probed on the A(2)Π3/2­X(2)Π3/2 (3,0) and (3,1) bands at 435.70 and 448.86 nm, respectively. The rates of formation of IO(v″ = 0) and IO(v″ = 1) were measured as a function of O2 number density using either conventional transient absorption or the simultaneous kinetic and ring-down technique, respectively. IO(v″ = 1) was found to be formed with a significantly larger rate constant, but reached far smaller peak concentrations than IO(v″ = 0). Kinetic modeling supports the conclusion that IO(v″ = 0) is produced both directly and through secondary chemistry, most probably involving the initial formation of the Criegee intermediate CH2OO and subsequent reaction with I atoms, while IO(v″ = 1) is produced exclusively via a direct mechanism. We propose that the reaction mechanism (direct or indirect) depends upon the degree of initial excitation of the photolytically produced CH2I reagent.

SELECTION OF CITATIONS
SEARCH DETAIL
...