Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 13(22): 24511-24523, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34818212

ABSTRACT

INTRODUCTION: Aging is characterized by the progressive loss of physiological capacity. Changes in gene expression can alter activity in defined age-related molecular pathways leading to cellular aging and increased aging disease susceptibility. The aim of the current study was to evaluate whether hyperbaric oxygen therapy (HBOT) affects gene expression in normal, non-pathological, aging adults. METHODS: Thirty-five healthy independently living adults, aged 64 and older, were enrolled to receive 60 daily HBOT exposures. Whole blood samples were collected at baseline, at the 30th and 60th HBOT session, and 1-2 weeks following the last session. Differential gene expression analysis was performed. RESULTS: Following 60 sessions of HBOT, 1342 genes and 570 genes were differently up- and downregulated (1912 total), respectively (p < 0.01 FDR), compared to baseline. Out of which, five genes were downregulated with a >1.5-fold change: ABCA13 (FC = -2.28), DNAJ6 (FC = -2.16), HBG2 (FC = -1.56), PDXDC1 (FC = -1.53), RANBP17 (FC = -1.75). Two weeks post-HBOT, ABCA13 expression was significantly downregulated with a >1.5fold change (FC = -1.54, p = 0.008). In conclusion, for the first time in humans, the study provides direct evidence of HBOT is associated with transcriptome changes in whole-blood samples. Our results demonstrate significant changes in gene expression of normal aging population.


Subject(s)
Aging , Hyperbaric Oxygenation , Transcriptome/drug effects , Aging/genetics , Aging/metabolism , Humans , Oxygen/pharmacology , RNA, Messenger/blood , RNA, Messenger/genetics , Transcriptome/genetics
2.
Pediatr Res ; 85(5): 719-723, 2019 04.
Article in English | MEDLINE | ID: mdl-30568185

ABSTRACT

BACKGROUND: Familial Steroid-sensitive Nephrotic Syndrome (SSNS) is rare, complicating the identification of candidate genes. A recent population-based approach study of SSNS identified HLA-DQA1 and Phospholipase C-Gamma 2 (PLCG2) missense coding variants as candidate loci. PLCG2 is a signaling molecule regulated by phosphorylation and is critical for Ca2+ flux in cells of the immune system. METHODS: In order to detect a candidate gene for familial SSNS, we conducted an whole-exome sequencing in a pedigree consisting of two healthy parents, two non-identical twin brothers with SSNS, and a healthy young sibling. Flow cytometric assays were conducted to investigate the effects of the identified PLCG2 rare variants on B cell receptor-mediated PLCG2 tyrosine 759 phosphorylation, as well as on Ca2+ flux. RESULTS: Two missense rare variants in the PLCG2 gene were detected in the affected twins. An increase in tyrosine phosphorylation of PLCG2 as well as more rapid Ca2+ flux were noted in response to stimulation in the affected twins compared to their parents. CONCLUSIONS: Rare variants in PLCG2 segregated with disease in familial SSNS. Functional studies suggest the combined rare variants result in a gain of function in PLCG2 activity. Taken together, these results support PLCG2 as a possible candidate locus for familial SSNS.


Subject(s)
Mutation, Missense , Nephrotic Syndrome/metabolism , Phospholipase C gamma/metabolism , Steroids/therapeutic use , Alleles , Antigens, CD19/metabolism , Calcium/metabolism , Child, Preschool , DNA Mutational Analysis , Diseases in Twins , Exome , Family Health , Flow Cytometry , Genetic Predisposition to Disease , Genetic Variation , Humans , Male , Mutation , Nephrotic Syndrome/genetics , Pedigree , Phenotype , Phospholipase C gamma/genetics , Phosphorylation , Risk , Signal Transduction
3.
Technol Cancer Res Treat ; 17: 1533033818793653, 2018 01 01.
Article in English | MEDLINE | ID: mdl-30099961

ABSTRACT

OBJECTIVE: Circulating tumor DNA is a promising noninvasive tool for cancer monitoring. One of the challenges in applying this tool is the detection of low-frequency mutations. The detection limit of these mutations varies between different molecular methods. The aim of this study is to characterize the factors affecting the limit of detection for epidermal growth factor receptor p.T790M mutation in circulating tumor DNA of patients with lung adenocarcinoma. METHODS: DNA was extracted from plasma samples of 102 patients. For sequencing the DNA, we used 2 different next-generation sequencing-based platforms: Ion Torrent Personal Genome Machine (56 cases) and Roche/454 (46 cases). Serially diluted synthetic DNA samples carrying the p.T790M mutation were sequenced using the Ion Torrent Personal Genome Machine for validation. Limit of detection was determined through the analysis of non-hot-spot nonreference reads, which were regarded as sequencing artifacts. RESULTS: The frequency of the non-hot-spot nonreference reads was higher in Ion Torrent Personal Genome Machine compared to Roche/454 (0.07% ± 0.08% and 0.03% ± 0.06%, respectively, P < .001). We found that different base type substitutions occur with different frequency. Since the base substitution leading to p.T790M mutation is C>T transition, its frequency was used to determine the limit of detection for the assay. Based on the C>T non-hot-spot nonreference allele frequency, we found that the limit of detection is 0.18% in Ion Torrent Personal Genome Machine and 0.1% in Roche/454. Based on these values, 48% and 56% of the cases were positive for T790M mutation in Ion Torrent Personal Genome Machine and Roche/454 groups, respectively. Agreement between duplicates was 76% in Ion Torrent Personal Genome Machine and 72% in Roche/454. Using serially diluted synthetic DNA samples carrying the p.T790M mutation, we could identify mutations with allele frequency of 0.18% or more using the Ion Torrent Personal Genome Machine, supporting our approach to determine the detection limit. CONCLUSION: Both the sequencing platform and the specific nucleotide change affect the limit of detection and should therefore be determined in the validation process of new assays.


Subject(s)
Circulating Tumor DNA/genetics , Adenocarcinoma of Lung/genetics , ErbB Receptors/genetics , Gene Frequency/genetics , Humans , Limit of Detection , Lung Neoplasms/genetics , Mutation/genetics
4.
J Virol Methods ; 212: 12-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25445792

ABSTRACT

Population HIV-1 sequencing is currently the method of choice for the identification and follow-up of HIV-1 antiretroviral drug resistance. It has limited sensitivity and results in a consensus sequence showing the most prevalent nucleotide per position. Moreover concomitant sequencing and interpretation of the results for several samples together is laborious and time consuming. In this study, the practical use of GS Junior and MiSeq bench-top next generation sequencing (NGS) platforms as an alternative to Trugene Sanger-based population sequencing in the clinical HIV laboratory was assessed. DeepChek(®)-HIV TherapyEdge software was used for processing all the protease and reverse transcriptase sequences and for resistance interpretation. Plasma samples from nine HIV-1 carriers, representing the major HIV-1 subtypes in Israel, were compared. The total number of amino acid substitutions identified in the nine samples by GS Junior (232 substitutions) and MiSeq (243 substitutions) was similar and higher than Trugene (181 substitutions), emphasizing the advantage of deep sequencing on population sequencing. More than 80% of the identified substitutions were identical between the GS Junior and MiSeq platforms, most of which (184 of 199) at similar frequency. Low abundance substitutions accounted for 20.9% of the MiSeq and 21.9% of the GS Junior output, the majority of which were not detected by Trugene. More drug resistance mutations were identified by both the NGS platforms, primarily, but not only, at low abundance. In conclusion, in combination with DeepChek, both GS Junior and MiSeq were found to be more sensitive than Trugene and adequate for HIV-1 resistance analysis in the clinical HIV laboratory.


Subject(s)
Clinical Laboratory Techniques/methods , HIV Infections/virology , HIV/classification , HIV/genetics , High-Throughput Nucleotide Sequencing/methods , Microbial Sensitivity Tests/methods , Amino Acid Substitution , HIV/isolation & purification , HIV Protease/genetics , HIV Reverse Transcriptase/genetics , Israel , Mutation, Missense , Sensitivity and Specificity , Software
5.
J Clin Microbiol ; 51(3): 880-6, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23284027

ABSTRACT

Detection of low-abundance drug resistance mutations (DRMs) of HIV-1 is an evolving approach in clinical practice. Ultradeep pyrosequencing has shown to be effective in detecting such mutations. The lack of a standardized commercially based assay limits the wide use of this method in clinical settings. 454 Life Sciences (Roche) is developing an HIV ultradeep pyrosequencing assay for their benchtop sequencer. We assessed the prototype plate in the clinical laboratory. Plasma samples genotyped by the standardized TruGene kit were retrospectively tested by this assay. Drug-treated subjects failing therapy and drug-naive patients were included. DRM analysis was based on the International AIDS Society USA DRM list and the Stanford algorithm. The prototype assay detected all of the DRMs detected by TruGene and additional 50 low-abundance DRMs. Several patients had low-abundance D67N, K70R, and M184V reverse transcriptase inhibitor mutations that persisted long after discontinuation of the drug that elicited these mutations. Additional patient harbored low-abundance V32I major protease inhibitor mutation, which under darunavir selection evolved later to be detected by TruGene. Stanford analysis suggested that some of the low-abundance DRMs were likely to affect the resistance burden in these subjects. The prototype assay performs at least as well as TruGene and has the advantage of detecting low-abundance drug resistance mutations undetected by TruGene. Its ease of use and lab-scale platform will likely facilitate its use in the clinical laboratory. The extent to which the detection of low-abundance DRMs will affect patient management is still unknown, but it is hoped that use of such an assay in clinical practice will help resolve this important question.


Subject(s)
Computational Biology/methods , Drug Resistance, Viral , HIV Infections/virology , HIV-1/drug effects , HIV-1/genetics , High-Throughput Nucleotide Sequencing/methods , Microbial Sensitivity Tests/methods , Adult , Aged , Female , HIV-1/isolation & purification , Humans , Male , Middle Aged , Mutant Proteins/genetics , Mutation, Missense , Viral Proteins/genetics , Virology/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...