Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Arch Environ Contam Toxicol ; 86(4): 363-374, 2024 May.
Article in English | MEDLINE | ID: mdl-38762667

ABSTRACT

Mercury (Hg) is an environmental contaminant that can negatively impact the health of humans and wildlife. Albatrosses and large petrels show some of the highest levels of Hg contamination among birds, with potential repercussions for reproduction and survival. Here, body feather total Hg (THg) concentrations were determined in breeding adults of five species of albatrosses and large petrels in the foraging guild at South Georgia during the mid-2010s. We tested the effects of species, sex and trophic ecology (inferred from stable isotopes) on THg concentrations and compared our results with published values from past decades. Feather THg concentrations differed significantly among species (range: 1.9-49.6 µg g-1 dw), and were highest in wandering albatrosses Diomedea exulans, intermediate in black-browed albatrosses Thalassarche melanophris and northern giant petrels Macronectes halli, and lowest in southern giant petrels M. giganteus and white-chinned petrels Procellaria aequinoctialis. Females were more contaminated than males in all species, potentially due to differences in distributions and diet composition. Across species, THg concentrations were not correlated with feather δ13C or δ15N values, implying that species effects (e.g., breeding and moulting frequencies) may be more important than trophic effects in explaining feather THg concentrations in this foraging guild. Within species, the only significant correlation was between THg and δ13C in wandering albatrosses, which could reflect higher Hg exposure in subtropical waters. Comparisons with THg concentrations from past studies, which reflect contamination from 10 to > 60 years ago, revealed considerable annual variation and some evidence for increases over time for wandering and black-browed albatrosses since before 1950 and from the late 1980s, respectively.


Subject(s)
Birds , Environmental Monitoring , Feathers , Mercury , Feathers/chemistry , Animals , Mercury/analysis , Female , Male , Environmental Pollutants/analysis , Environmental Pollutants/metabolism
2.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: mdl-33658194

ABSTRACT

Migratory marine species cross political borders and enter the high seas, where the lack of an effective global management framework for biodiversity leaves them vulnerable to threats. Here, we combine 10,108 tracks from 5775 individual birds at 87 sites with data on breeding population sizes to estimate the relative year-round importance of national jurisdictions and high seas areas for 39 species of albatrosses and large petrels. Populations from every country made extensive use of the high seas, indicating the stake each country has in the management of biodiversity in international waters. We quantified the links among national populations of these threatened seabirds and the regional fisheries management organizations (RFMOs) which regulate fishing in the high seas. This work makes explicit the relative responsibilities that each country and RFMO has for the management of shared biodiversity, providing invaluable information for the conservation and management of migratory species in the marine realm.

3.
Sci Rep ; 10(1): 19772, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33168842

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Mov Ecol ; 8: 17, 2020.
Article in English | MEDLINE | ID: mdl-32341783

ABSTRACT

BACKGROUND: Human activities have profoundly altered the spatio-temporal availability of food resources. Yet, there is a clear lack of knowledge on how opportunistic species adapt to these new circumstances by scheduling their daily rhythms and adjust their foraging decisions to predicable patterns of anthropic food subsidies. Here, we used nearly continuous GPS tracking data to investigate the adaptability of daily foraging activity in an opportunistic predator, the yellow-legged gull (Larus michahellis), in response to human schedules. METHODS: By using waveform analysis, we compared timing and magnitude of peaks in daily activity of different GPS-tracked individuals in eleven different habitat types, in relation to type of day (i.e., weekday vs. weekend). RESULTS: Daily activity rhythms varied greatly depending on whether it was a weekday or weekend, thus suggesting that gulls' activity peaks matched the routines of human activity in each habitat type. We observed for the first time two types of activity as modelled by waveforms analysis: marine habitats showed unimodal patterns with prolonged activity and terrestrial habitats showed bimodal patterns with two shorter and variable activity peaks. CONCLUSIONS: Our results suggest that gulls are able to fine-tune their daily activity rhythms to habitat-specific human schedules, since these likely provide feeding opportunities. Behavioral plasticity may thus be an important driver of expansive population dynamics. Information on predictable relationships between daily activity patterns of gulls and human activities is therefore relevant to their population management.

5.
Sci Rep ; 9(1): 10659, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337777

ABSTRACT

Wildlife that exploit human-made habitats hosts and spreads bacterial pathogens. This shapes the epidemiology of infectious diseases and facilitates pathogen spill-over between wildlife and humans. This is a global problem, yet little is known about the dissemination potential of pathogen-infected animals. By combining molecular pathogen diagnosis with GPS tracking of pathogen-infected gulls, we show how this knowledge gap could be filled at regional scales. Specifically, we generated pathogen risk maps of Salmonella, Campylobacter and Chlamydia based on the spatial movements of pathogen-infected yellow-legged gulls (Larus michahellis) equipped with GPS recorders. Also, crossing this spatial information with habitat information, we identified critical habitats for the potential transmission of these bacteria in southern Europe. The use of human-made habitats by infected-gulls could potentially increase the potential risk of direct and indirect bidirectional transmission of pathogens between humans and wildlife. Our findings show that pathogen-infected wildlife equipped with GPS recorders can provide accurate information on the spatial spread risk for zoonotic bacteria. Integration of GPS-tracking with classical epidemiological approaches may help to improve zoonosis surveillance and control programs.


Subject(s)
Animal Migration/physiology , Campylobacter Infections/transmission , Chlamydia Infections/transmission , Salmonella Infections/transmission , Zoonoses/transmission , Animals , Animals, Wild , Charadriiformes , Europe , Geographic Information Systems , Humans
6.
R Soc Open Sci ; 6(1): 181151, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30800365

ABSTRACT

The study of juvenile migration behaviour of seabird species has been limited so far by the inability to track their movements during long time periods. Foraging and flying skills of young individuals are assumed to be inferior to those of adults, making them more vulnerable during long-distance migrations. In addition to natural oceanographic effects and intrinsic conditions, incidental seabird harvest by human fisheries is one of the main causes of worldwide seabird population declines, and it has been hypothesized that juveniles are particularly vulnerable to bycatch during their first weeks at sea after leaving the nest. We used solar-powered satellite tags to track the at-sea movements of adults and juveniles of Scopoli's shearwater (Calonectris diomedea) after the autumn departure from their breeding colony in Chafarinas Islands (southwestern Mediterranean Sea). Eighty per cent of juvenile tags stopped transmitting during the first week at sea, within 50 km of their natal colony, in an area with one of the highest concentrations of fishing activities in the Mediterranean Sea. All adult birds tagged and only 20% of juveniles migrated into the Atlantic and southwards along the coast of West Africa. The two age groups showed different habitat preferences, with juveniles travelling farther from the coast, in windier and less productive waters than adults. We conclude that Scopoli's shearwater juveniles are particularly vulnerable to mortality events, and we highlight that fisheries, along with differential age-related behaviour skills between adults and juveniles, are likely causes of this mortality. Overall, our study highlights the importance of conducting tracking studies during the first stages of juvenile migration.

7.
Conserv Biol ; 32(6): 1436-1447, 2018 12.
Article in English | MEDLINE | ID: mdl-29968335

ABSTRACT

Identifying priority areas for biodiversity conservation is particularly challenging in the marine environment due to the open and dynamic nature of the ocean, the paucity of information on species distribution, and the necessary balance between marine biodiversity conservation and essential supporting services such as seafood provision. We used the Patagonian seabird breeding community as a case study to propose an integrated and adaptive method for delimiting key marine areas for conservation. Priority areas were defined through a free decision-support tool (Marxan) that included projected at-sea distributions of seabirds (approximately 2,225,000 individuals of 14 species); BirdLife Important Bird and Biodiversity Areas (IBAs) for pelagic bird species; and the economic costs of potential regulations in fishing practices. The proposed reserve network encompassed approximately 300,000 km2 that was largely concentrated in northern and southern inshore and northern and central offshore regions. This reserve network exceeded the minimum threshold of 20% conservation of the abundance of each species proposed by the World Parks Congress. Based on marine currents in the study area, we further identified the 3 primary water masses that may influence areas of conservation priority through water inflow. Our reserve network may benefit from enhanced marine productivity in these highly connected areas, but they may be threatened by human impacts such as marine pollution. Our method of reserve network design is an important advance with respect to the more classical approaches based on criteria defined for one or a few species and may be particularly useful when information on spatial patterns is data deficient. Our approach also accommodates addition of new information on seabird distribution and population dynamics, human activities, and alterations in the marine environment.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Birds , Human Activities , Humans , Population Dynamics
8.
Sci Rep ; 7(1): 4500, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28674385

ABSTRACT

Spring sea ice phenology regulates the timing of the two consecutive pulses of marine autotrophs that form the base of the Arctic marine food webs. This timing has been suggested to be the single most essential driver of secondary production and the efficiency with which biomass and energy are transferred to higher trophic levels. We investigated the chronological sequence of productivity pulses and its potential cascading impacts on the reproductive performance of the High Arctic seabird community from Svalbard, Norway. We provide evidence that interannual changes in the seasonal patterns of marine productivity may impact the breeding performance of little auks and Brünnich's guillemots. These results may be of particular interest given that current global warming trends in the Barents Sea region predict one of the highest rates of sea ice loss within the circumpolar Arctic. However, local- to regional-scale heterogeneity in sea ice melting phenology may add uncertainty to predictions of climate-driven environmental impacts on seabirds. Indeed, our fine-scale analysis reveals that the inshore Brünnich's guillemots are facing a slower advancement in the timing of ice melt compared to the offshore-foraging little auks. We provide a suitable framework for analyzing the effects of climate-driven sea ice disappearance on seabird fitness.


Subject(s)
Birds , Food Chain , Ice Cover , Reproduction , Animals , Arctic Regions , Breeding , Ecosystem , Environment , Seasons
9.
PLoS One ; 11(7): e0159974, 2016.
Article in English | MEDLINE | ID: mdl-27448048

ABSTRACT

Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis). In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.


Subject(s)
Charadriiformes , Geographic Information Systems , Waste Disposal Facilities , Animals , Crime , Environmental Monitoring , Humans , Spain , Spatial Analysis , Waste Management
10.
Mol Phylogenet Evol ; 99: 194-203, 2016 06.
Article in English | MEDLINE | ID: mdl-26994943

ABSTRACT

Long-distance dispersal events and their derivable increases of genetic diversity have been highlighted as important ecological and evolutionary determinants that improve performances of range-expanding species. In the context of global environmental change, specific dispersal strategies have to be understood and foreseen if we like to prevent general biodiversity impoverishment or the spread of allochthonous diseases. We explored the genetic structure and potential population mixing on the recently range-expanding European bee-eater Merops apiaster. In addition, the species is suspected of harbouring and disseminating the most relevant disease for bees and apiculture, Nosema microsporidia. In agreement with complementary ringing recovery data and morphometric measurements, genetic results on two mitochondrial genes and 12 microsatellites showed a reasonably well-structured population partitioning along its breeding distribution. Microsatellite results indicated that not only did a few birds recently disperse long distance during their return migrations and change their natal breeding areas, but also that a group of allochthonous birds together founded a new colony. Although we did not provide evidence on the direct implication of birds in the widespread of Nosema parasites, our finding on the long-distance dispersal of bird flocks between remote breeding colonies adds concern about the role of European bee-eaters in the spread of such disease at a large, inter-continental scale.


Subject(s)
Birds/genetics , Genetics, Population , Animal Migration , Animals , Biodiversity , Biological Evolution , Birds/classification , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Genome , Genotype , Microsatellite Repeats/genetics , Phylogeny , Principal Component Analysis
11.
PLoS One ; 10(9): e0135938, 2015.
Article in English | MEDLINE | ID: mdl-26356677

ABSTRACT

A key challenge to the application of continent-wide feather isoscapes for geographic assignment of migrant birds is the lack of ground-truthed samples. This is especially true for long-distance Palearctic-Afrotropical migrants. We used spatially-explicit information on the δ2H composition of archived feathers from Green-backed/Grey-backed Camaroptera, to create a feather δ2H isoscape for sub-Saharan Africa. We sampled from 34 out of 41 sub-Saharan countries, totaling 205 sampling localities. Feather samples were obtained from museum collections (n = 224, from 1950 to 2014) for δ2H assay. Region, altitude, annual rainfall and seasonal patterns in precipitation were revealed as relevant explanatory variables for spatial patterns in feather δ2H. Predicted feather δ2H values ranged from -4.0 ‰ to -63.3 ‰, with higher values observed in the Great Rift Valley and South Africa, and lower values in central Africa. Our feather isoscape differed from that modelled previously using a precipitation δ2H isoscape and an assumed feather-to-precipitation calibration, but the relatively low model goodness fit (F10,213 = 5.98, p<0.001, R2 = 0.18) suggests that other, non-controlled variables might be driving observed geographic patterns in feather δ2H values. Additional ground-truthing studies are therefore recommended to improve the accuracy of the African feather δ2H isoscape.


Subject(s)
Deuterium/metabolism , Feathers/metabolism , Africa South of the Sahara , Animals , Birds/metabolism , Confidence Intervals , Geography , Models, Biological , Regression Analysis
12.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26063848

ABSTRACT

Life-history strategies have evolved in response to predictable patterns of environmental features. In practice, linking life-history strategies and changes in environmental conditions requires comparable space-time scales between both processes, a difficult match in most marine system studies. We propose a novel spatio-temporal and dynamic scale to explore marine productivity patterns probably driving reproductive timing in the inshore little penguin (Eudyptula minor), based on monthly data on ocean circulation in the Southern Ocean, Australia. In contrast to what occurred when considering any other fixed scales, little penguin's highly variable laying date always occurred within the annual peak of ocean productivity that emerged from our newly defined dynamic scale. Additionally, local sea surface temperature seems to have triggered the onset of reproduction, acting as an environmental cue informing on marine productivity patterns at our dynamic scale. Chlorophyll-a patterns extracted from this scale revealed that environment factors in marine ecosystems affecting breeding decisions are related to a much wider region than foraging areas that are commonly used in current studies investigating the link between animals' life history and their environment. We suggest that marine productivity patterns may be more predictable than previously thought when environmental and biological data are examined at appropriate scales.


Subject(s)
Reproduction , Spheniscidae/physiology , Water Movements , Animals , Oceans and Seas , Seasons , Victoria
13.
PLoS One ; 9(3): e92674, 2014.
Article in English | MEDLINE | ID: mdl-24664115

ABSTRACT

Small and peripheral populations are typically vulnerable to local extinction processes but important for the metapopulation dynamics of species. The Slender-billed gull (Chroicocephalus genei) is a long-lived species breeding in unstable ephemeral coastal habitats. Their Western Mediterranean populations are relatively small and represent the edge of their global geographical distribution. At a local scale, using long-term data (14 years) on annual breeding success and capture-resights of marked individuals, we estimated and compared the vital rates and evaluated the connectivity of two Spanish populations (Ebro Delta and Doñana) varying in their local environmental conditions. At a metapopulation scale, we analyzed 22 years of data on breeding numbers to predict their future prospects by means of population demographic models. Local survival and breeding success of gulls from the Ebro Delta was lower than those from Doñana, which is likely the result of higher permanent emigration and/or winter mortality in the former. Gulls from the Ebro Delta wintered mostly in Mediterranean areas whereas those from Doñana did so in Atlantic coasts, where food availability is higher. Whereas adult local survival was constant, juvenile local survival showed temporal parallel variations between colonies, probably related to natal dispersal to other breeding colonies. Our results suggested that dispersal was higher at the Ebro Delta and gulls emigrating from their natal colonies settled preferentially in close patches. We found large fluctuations in breeding numbers among local populations probably related to the fact that the Slender-billed gull is a species adapted to unstable and unpredictable habitats with high abilities to disperse between suitable patches depending on environmental stochastic conditions during breeding.


Subject(s)
Charadriiformes , Animals , Breeding , Mediterranean Region , Population Dynamics , Seasons
14.
PLoS One ; 9(3): e92665, 2014.
Article in English | MEDLINE | ID: mdl-24667296

ABSTRACT

Reconstructing the diet of top marine predators is of great significance in several key areas of applied ecology, requiring accurate estimation of their true diet. However, from conventional stomach content analysis to recent stable isotope and DNA analyses, no one method is bias or error free. Here, we evaluated the accuracy of recent methods to estimate the actual proportion of a controlled diet fed to a top-predator seabird, the Little penguin (Eudyptula minor). We combined published DNA data of penguins scats with blood plasma δ(15)N and δ(13)C values to reconstruct the diet of individual penguins fed experimentally. Mismatch between controlled (true) ingested diet and dietary estimates obtained through the separately use of stable isotope and DNA data suggested some degree of differences in prey assimilation (stable isotope) and digestion rates (DNA analysis). In contrast, combined posterior isotope mixing model with DNA Bayesian priors provided the closest match to the true diet. We provided the first evidence suggesting that the combined use of these complementary techniques may provide better estimates of the actual diet of top marine predators- a powerful tool in applied ecology in the search for the true consumed diet.


Subject(s)
Aquatic Organisms/physiology , Food Chain , Models, Biological , Predatory Behavior/physiology , Spheniscidae/physiology , Animals
15.
PLoS One ; 8(4): e62897, 2013.
Article in English | MEDLINE | ID: mdl-23646155

ABSTRACT

The principle of competitive exclusion postulates that ecologically-similar species are expected to partition their use of resources, leading to niche divergence. The most likely mechanisms allowing such coexistence are considered to be segregation in a horizontal, vertical or temporal dimension, or, where these overlap, a difference in trophic niche. Here, by combining information obtained from tracking devices (geolocator-immersion and time depth recorders), stable isotope analyses of blood, and conventional morphometry, we provide a detailed investigation of the ecological mechanisms that explain the coexistence of four species of abundant, zooplanktivorous seabirds in Southern Ocean ecosystems (blue petrel Halobaena caerulea, Antarctic prion Pachyptila desolata, common diving petrel Pelecanoides urinatrix and South Georgian diving petrel P. georgicus). The results revealed a combination of horizontal, vertical and temporal foraging segregation during the breeding season. The stable isotope and morphological analyses reinforced this conclusion, indicating that each species occupied a distinct trophic space, and that this appears to reflect adaptations in terms of flight performance. In conclusion, the present study indicated that although there was a degree of overlap in some measures of foraging behaviour, overall the four taxa operated in very different ecological space despite breeding in close proximity. We therefore provide important insight into the mechanisms allowing these very large populations of ecologically-similar predators to coexist.


Subject(s)
Birds , Ecosystem , Animals , Behavior, Animal , Ecology , Spatio-Temporal Analysis
16.
J Anim Ecol ; 82(1): 121-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22823099

ABSTRACT

Large-scale seasonal climatic indices, such as the North Atlantic Oscillation (NAO) index or the Southern Oscillation Index (SOI), account for major variations in weather and climate around the world and may influence population dynamics in many organisms. However, assessing the extent of climate impacts on species and their life-history traits requires reliable quantitative statistical approaches. We used a new analytical tool in mark-recapture, the multi-event modelling, to simultaneously assess the influence of climatic variation on multiple demographic parameters (i.e. adult survival, transient probability, reproductive skipping and nest dispersal) at two Mediterranean colonies of the Cory's shearwater Calonectris diomedea, a trans-equatorial migratory long-lived seabird. We also analysed the impact of climate in the breeding success at the two colonies. We found a clear temporal variation of survival for Cory's shearwaters, strongly associated to the large-scale SOI especially in one of the colonies (up to 66% of variance explained). Atlantic hurricane season is modulated by the SOI and coincides with shearwater migration to their wintering areas, directly affecting survival probabilities. However, the SOI was a better predictor of survival probabilities than the frequency of hurricanes; thus, we cannot discard an indirect additive effect of SOI via food availability. Accordingly, the proportion of transients was also correlated with SOI values, indicating higher costs of first reproduction (resulting in either mortality or permanent dispersal) when bad environmental conditions occurred during winter before reproduction. Breeding success was also affected by climatic factors, the NAO explaining c. 41% of variance, probably as a result of its effect in the timing of peak abundance of squid and small pelagics, the main prey for shearwaters. No climatic effect was found either on reproductive skipping or on nest dispersal. Contrarily to what we expect for a long-lived organism, large-scale climatic indexes had a more pronounced effect on survival and transient probabilities than on less sensitive fitness parameters such reproductive skipping or nest dispersal probabilities. The potential increase in hurricane frequency because of global warming may interact with other global change agents (such as incidental bycatch and predation by alien species) nowadays impacting shearwaters, affecting future viability of populations.


Subject(s)
Animal Migration/physiology , Charadriiformes/physiology , Climate , Demography , Animals , Environmental Monitoring , Models, Biological , Time Factors
17.
PLoS One ; 7(10): e47551, 2012.
Article in English | MEDLINE | ID: mdl-23094062

ABSTRACT

Current rates of wildlife habitat loss have placed increasing demands on managers to develop, validate and implement tools aimed at improving our ability to evaluate such impacts on wildlife. Here, we present a case study conducted at the Natural Area of Doñana (SW Spain) where remote sensing and stable isotope (δ(13)C, δ(15)N) analyses of individuals were combined to unravel (1) the effect of variations in availability of natural food resources (i.e. from natural marshes) on reproductive performance of a Slender-billed Gull (Chroicocephalus genei) population, and (2) the role of two adjacent, artificial systems (a fish farm and saltmines) as alternate anthropogenic feeding areas. Based on long-term (1983-2004) remote-sensing, we inferred the average extent of flooded area at the marshland (a proxy to natural resource availability) annually. Estimated flooded areas (ranging from extreme drought [ca. 151 ha, 1995] to high moisture [15,049 ha, 2004]) were positively related to reproductive success of gulls (estimated for the 1993-2004 period, and ranging from ca. 0 to 1.7 fledglings per breeding pairs), suggesting that habitat availability played a role in determining their reproductive performance. Based on blood δ(13)C and δ(15)N values of fledglings, 2001-2004, and a Bayesian isotopic mixing model, we conclude that saltmines acted as the main alternative foraging habitat for gulls, with relative contributions increasing as the extent of marshland decreased. Although adjacent, anthropogenic systems have been established as the preferred breeding sites for this gull population, dietary switches towards exploitation of alternative (anthropogenic) food resources negatively affected the reproductive output of this species, thus challenging the perception that these man-made systems are necessarily a reliable buffer against loss of natural feeding habitats. The methodology and results derived from this study could be extended to a large suite of threatened natural communities worldwide, thus providing a useful framework for management and conservation.


Subject(s)
Adaptation, Physiological , Charadriiformes/physiology , Conservation of Natural Resources , Feeding Behavior , Genetic Fitness/physiology , Reproduction/physiology , Animals , Animals, Newborn , Bayes Theorem , Carbon Isotopes , Environmental Monitoring , Female , Humans , Male , Mining , Population Dynamics , Remote Sensing Technology , Spain , Wetlands
18.
Biol Lett ; 5(4): 545-8, 2009 Aug 23.
Article in English | MEDLINE | ID: mdl-19364709

ABSTRACT

Trophic segregation has been proposed as a major mechanism explaining the coexistence of closely related animal taxa. However, how such segregation varies throughout the annual cycle is poorly understood. Here, we examined the feeding ecology of the two subspecies of Cory's shearwater, Calonectris diomedea diomedea and Calonectris diomedea borealis, breeding in sympatry in a Mediterranean colony. To study trophic segregation at different stages, we combined the analysis of isotope values (delta(15)N, delta(13)C) in blood obtained during incubation and in feathers moulted during chick-rearing and wintering periods with satellite-tracking data during the chick-rearing period. Satellite-tracking and stable isotope data of the first primary feather revealed that C. d. borealis foraged mainly in the Atlantic whereas C. d. diomedea foraged exclusively in the Mediterranean. This spatial segregation could reflect the foraging behaviour of the C. d. borealis individuals before they arrived at the Mediterranean colony. Alternatively, greater wing loading of C. d. borealis individuals may confer the ability to fly across the strong winds occurring at the at the Gibraltar strait. Isotope values of the eighth secondary feather also support segregation in wintering areas between the two forms: C. d. diomedea wintered mainly in association with the Canary current, whereas C. d. borealis wintered in the South African coast. Overall, our results show that spatial segregation in foraging areas can display substantial variation throughout the annual cycle and is probably a major mechanism facilitating coexistence between closely related taxa.


Subject(s)
Animal Migration , Feeding Behavior/physiology , Sexual Behavior, Animal , Animals , Birds/genetics , Birds/physiology , Ecology , Ecosystem , Genetic Speciation , Geography , Models, Biological , Nesting Behavior , Seasons
19.
Oecologia ; 160(3): 507-14, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19288137

ABSTRACT

Site-quality is a major determinant of fitness but its effect can be confounded by individual quality, a relationship that has been little studied in large, long-lived vertebrates. The fitness effects of quality estimates depend on the assumption of co-variation between individual and territory quality and can be framed as five working hypotheses: no effect on fitness, exclusive effect of individual quality, exclusive effect of site quality, and independent or interactive effects of the two. We explored such a framework using a medium-sized raptor, the black kite Milvus migrans, as a model species. Individual and territory quality co-varied, but the strength of the relationship varied across different estimates of individual quality (age, body size, or mass residuals). Short-term production of fledglings was related to the independent effects of both individual and territory quality. However, longer-term production of recruits was related solely to territory quality. The disappearance of individual quality effects over the long-term may be caused by antagonistic selective pressures acting during different stages of the life cycle. Our results contribute to a growing appreciation of the long-term fitness-benefits of advantages experienced in early life and highlight the importance of a long-term perspective in studies assessing the effects of individual and territory quality. In our case study, prioritizing sites for conservation on the basis of territory quality may be a feasible pathway to maintain the viability of the population. However, scenarios where such a method could be inefficient have been previously reported, suggesting caution in its application. More studies are needed to understand the generality of the efficiency of priority-setting approaches based on site quality.


Subject(s)
Ecosystem , Falconiformes/physiology , Fertility/physiology , Territoriality , Age Factors , Animals , Body Constitution/physiology , Body Size , Linear Models , Spain
20.
PLoS One ; 4(3): e4826, 2009.
Article in English | MEDLINE | ID: mdl-19279685

ABSTRACT

Along the lines of the 'polluter pays principle', it has recently been proposed that the local long-line fishing industry should fund eradication of terrestrial predators at seabird breeding colonies, as a compensatory measure for the bycatch caused by the fishing activity. The measure is economically sound, but a quantitative and reliable test of its biological efficacy has never been conducted. Here, we investigated the demographic consequences of predator eradication for Cory's shearwater Calonectris diomedea, breeding in the Mediterranean, using a population model that integrates demographic rates estimated from individual life-history information with experimental measures of predation and habitat structure. We found that similar values of population growth rate can be obtained by different combinations of habitat characteristics, predator abundance and adult mortality, which explains the persistence of shearwater colonies in islands with introduced predators. Even so, given the empirically obtained values of survival, all combinations of predator abundance and habitat characteristics projected a decline in shearwater numbers. Perturbation analyses indicated that the value and the sensitivity of shearwater population growth rates were affected by all covariates considered and their interactions. A decrease in rat abundance delivered only a small increase in the population growth rate, whereas a change in adult survival (a parameter independent of rat abundance) had the strongest impact on population dynamics. When adult survival is low, rat eradication would allow us to "buy" years before extinction but does not reverse the process. Rat eradication can therefore be seen as an emergency measure if threats on adult survival are eliminated in the medium-term period. For species with low fecundity and long life expectancy, our results suggest that rat control campaigns are not a sufficient, self-standing measure to compensate the biological toll of long-line fisheries.


Subject(s)
Animal Migration , Birds/physiology , Conservation of Natural Resources , Extinction, Biological , Animals , Feeding Behavior , Fishes , Longevity , Predatory Behavior , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...