Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 12: 636663, 2021.
Article in English | MEDLINE | ID: mdl-33995437

ABSTRACT

The biogenesis of root-knot nematode (Meloidogyne spp.)-induced galls requires the hyperactivation of the cell cycle with controlled balance of mitotic and endocycle programs to keep its homeostasis. To better understand gall functioning and to develop new control strategies for this pest, it is essential to find out how the plant host cell cycle programs are responding and integrated during the nematode-induced gall formation. This work investigated the spatial localization of a number of gene transcripts involved in the pre-replication complex during DNA replication in galls and report their akin colocation with the cell cycle S-phase regulator Armadillo BTB Arabidopsis Protein 1 (ABAP1). ABAP1 is a negative regulator of pre-replication complex controlling DNA replication of genes involved in control of cell division and proliferation; therefore, its function has been investigated during gall ontogenesis. Functional analysis was performed upon ABAP1 knockdown and overexpression in Arabidopsis thaliana. We detected ABAP1 promoter activity and localized ABAP1 protein in galls during development, and its overexpression displayed significantly reduced gall sizes containing atypical giant cells. Profuse ABAP1 expression also impaired gall induction and hindered nematode reproduction. Remarkably, ABAP1 knockdown likewise negatively affected gall and nematode development, suggesting its involvement in the feeding site homeostasis. Microscopy analysis of cleared and nuclei-stained whole galls revealed that ABAP1 accumulation resulted in aberrant giant cells displaying interconnected nuclei filled with enlarged heterochromatic regions. Also, imbalanced ABAP1 expression caused changes in expression patterns of genes involved in the cell division control as demonstrated by qRT-PCR. CDT1a, CDT1b, CDKA;1, and CYCB1;1 mRNA levels were significantly increased in galls upon ABAP1 overexpression, possibly contributing to the structural changes in galls during nematode infection. Overall, data obtained in galls reinforced the role of ABAP1 controlling DNA replication and mitosis and, consequently, cell proliferation. ABAP1 expression might likely take part of a highly ordered mechanism balancing of cell cycle control to prevent gall expansion. ABAP1 expression might prevent galls to further expand, limiting excessive mitotic activity. Our data strongly suggest that ABAP1 as a unique plant gene is an essential component for cell cycle regulation throughout gall development during nematode infection and is required for feeding site homeostasis.

2.
Rev. biol. trop ; 59(4): 1845-1858, Dec. 2011. ilus
Article in Spanish | LILACS | ID: lil-646556

ABSTRACT

Ontogeny of strobili, sporangia development and sporogenesis in Equisetum giganteum (Equisetaceae) from the Colombian Andes. Studies on the ontogeny of the strobilus, sporangium and reproductive biology of this group of ferns are scarce. Here we describe the ontogeny of the strobilus and sporangia, and the process of sporogenesis using specimens of E. giganteum from Colombia collected along the Rio Frio, Distrito de Sevilla, Piedecuesta, Santander, at 2 200m altitude. The strobili in different stages of development were fixed, dehydrated, embedded in paraffin, sectioned using a rotatory microtome and stained with the safranin O and fast green technique. Observations were made using differential interference contrast microscopy (DIC) or Nomarski microscopy, an optical microscopy illumination technique that enhances the contrast in unstained, transparent. Strobili arise and begin to develop in the apical meristems of the main axis and lateral branches, with no significant differences in the ontogeny of strobili of one or other axis. Successive processes of cell division and differentiation lead to the growth of the strobilus and the formation of sporangiophores. These are formed by the scutellum, the manubrium or pedicel-like, basal part of the sporangiophore, and initial cells of sporangium, which differentiate to form the sporangium wall, the sporocytes and the tapetum. There is not formation of a characteristic arquesporium, as sporocytes quickly undergo meiosis originating tetrads of spores. The tapetum retains its histological integrity, but subsequently the cell walls break down and form a plasmodium that invades the sporangial cavity, partially surrounding the tetrads, and then the spores. Towards the end of the sporogenesis the tapetum disintegrates leaving spores with elaters free within the sporangial cavity. Two layers finally form the sporangium wall: the sporangium wall itself, with thickened, lignified cell walls and an underlying pyknotic layer. The mature spores are chlorofilous, morphologically similar and have exospore, a thin perispore and two elaters. This study of the ontogeny of the spore-producing structures and spores is the first contribution of this type for a tropical species of the genus. Fluorescence microscopy indicates that elaters and the wall of the sporangium are autofluorescent, while other structures induced fluorescence emitted by the fluorescent dye safranin O. The results were also discussed in relation to what is known so far for other species of Equisetum, suggesting that ontogenetic processes and structure of characters sporoderm are relatively constant in Equisetum, which implies important diagnostic value in the taxonomy of the group. Rev. Biol. Trop. 59 (4): 1845-1858. Epub 2011 December 01.


Estudios sobre la ontogenia del estróbilo, los esporangios y la biología reproductiva de Equisetum son escasos, por lo tanto, para la especie E. giganteum, se estudiaron estos aspectos en especímenes recolectados a orillas del Río Frío, Santander, Colombia (2 200m). Los estróbilos en diferentes etapas de maduración fueron fijados, deshidratados, embebidos en parafina, seccionados en micrótomo rotatorio y teñidos con safranina O-fast green. Las observaciones se efectuaron mediante un microscopio óptico de alta resolución con contraste diferencial de interferencia (DIC) y microscopio de fluorescencia. Los estróbilos se inician a partir del meristemo apical, tanto en el eje principal como en los laterales, sin diferencias en el proceso de ontogenia y esporogénesis entre estróbilos de diferentes ejes. Sucesivas mitosis y diferenciación celular conducen al crecimiento del estróbilo, y a la formación de los esporangióforos peltados, formados por el manubrio, o porción basal con aspecto de pedicelo, el escutelo, o porción apical aplanada y las iniciales del esporangio, los cuales se diferenciarán para formar la pared del esporangio, los esporocitos y el tapete. No se forma arquesporio y los esporocitos experimentan meiosis para formar tétradas de esporas. El tapete mantiene la integridad histológica hasta la formación de las tétradas y en esa etapa forma un plasmodio que invade la cavidad esporangial la cual rodea parcialmente las tétradas y luego las esporas, y aparecen las cámaras plasmodiales, un término propuesto aquí para las formaciones designadas en inglés "tapetal gaps". La pared del esporangio queda reducida a dos capas celulares: una externa con engrosamientos lignificados en todas las paredes celulares y una interna picnótica. Al finalizar la esporogénesis, el tapete degenera, y las esporas, con exosporio, perisporio delgado, casi membranáceo y eláteres quedan libres en la cavidad esporangial. El esporodermo, los núcleos y nucléolos presentan fluorescencia roja, inducida por coloración con safranina O, mientras que los eláteres y las células de la pared del esporangio presentan autofluorescencia amarillo-naranja.


Subject(s)
Equisetum/cytology , Sporangia/cytology , Spores/growth & development , Colombia , Equisetum/growth & development , Meiosis , Sporangia/growth & development
3.
Rev Biol Trop ; 59(4): 1845-58, 2011 Dec.
Article in Spanish | MEDLINE | ID: mdl-22208097

ABSTRACT

Studies on the ontogeny of the strobilus, sporangium and reproductive biology of this group of ferns are scarce. Here we describe the ontogeny of the strobilus and sporangia, and the process of sporogenesis using specimens of E. giganteum from Colombia collected along the Rio Frio, Distrito de Sevilla, Piedecuesta, Santander, at 2200m altitude. The strobili in different stages of development were fixed, dehydrated, embedded in paraffin, sectioned using a rotatory microtome and stained with the safranin O and fast green technique. Observations were made using differential interference contrast microscopy (DIC) or Nomarski microscopy, an optical microscopy illumination technique that enhances the contrast in unstained, transparent. Strobili arise and begin to develop in the apical meristems of the main axis and lateral branches, with no significant differences in the ontogeny of strobili of one or other axis. Successive processes of cell division and differentiation lead to the growth of the strobilus and the formation of sporangiophores. These are formed by the scutellum, the manubrium or pedicel-like, basal part of the sporangiophore, and initial cells of sporangium, which differentiate to form the sporangium wall, the sporocytes and the tapetum. There is not formation of a characteristic arquesporium, as sporocytes quickly undergo meiosis originating tetrads of spores. The tapetum retains its histological integrity, but subsequently the cell walls break down and form a plasmodium that invades the sporangial cavity, partially surrounding the tetrads, and then the spores. Towards the end of the sporogenesis the tapetum disintegrates leaving spores with elaters free within the sporangial cavity. Two layers finally form the sporangium wall: the sporangium wall itself, with thickened, lignified cell walls and an underlying pyknotic layer. The mature spores are chlorofilous, morphologically similar and have exospore, a thin perispore and two elaters. This study of the ontogeny of the spore-producing structures and spores is the first contribution of this type for a tropical species of the genus. Fluorescence microscopy indicates that elaters and the wall of the sporangium are autofluorescent, while other structures induced fluorescence emitted by the fluorescent dye safranin O. The results were also discussed in relation to what is known so far for other species of Equisetum, suggesting that ontogenetic processes and structure of characters sporoderm are relatively constant in Equisetum, which implies important diagnostic value in the taxonomy of the group.


Subject(s)
Equisetum/cytology , Sporangia/cytology , Spores/growth & development , Colombia , Equisetum/growth & development , Meiosis , Sporangia/growth & development
4.
Rev. biol. trop ; 57(4): 1141-1152, dic. 2009. ilus, tab
Article in Spanish | LILACS | ID: lil-637750

ABSTRACT

Sporangia ontogeny and sporogenesis of the lycopodium Huperzia brevifolia (Lycopodiaceae) from the high mountains of Colombia. Huperzia brevifolia is one of the dominant species of the genus Huperzia living in paramos and superparamos from the Colombian Andes. A detailed study of the sporangium’s ontogeny and sporogenesis was carried out using specimens collected at 4200m above sea level, in Parque Natural Nacional El Cocuy, Colombia. Small pieces of caulinar axis bearing sporangia were fixed, dehydrated, paraffin embedded, sectioned in a rotatory microtome, and stained using the common Safranin O-Fast Green technique; handmade cross sections were also made, stained with aqueous Toluidine Blue (TBO). The sporangia develops basipetally, a condition that allows observation of all the developmental stages taking place throughout the caulinar axis of adult plants. Each sporangium originates from a group of epidermal cells, axilar to the microphylls. These cells undergo active mitosis, and produce new external and internal cellular groups. The sporangium wall and the tapetum originate from the external group of cells, while the internal cellular group leads to the sporogenous tissue. Meiosis occur in the sporocytes and produce simultaneous types tetrads, each one giving rise four trilete spores, with foveolate ornamentation. During the sporangium ripening, the outermost layer of the wall develops anticlinally, and inner periclinal thickenings and the innermost one perform as a secretory tapetum, which persists until the spores are completely mature. All other cellular layers colapse. Rev. Biol. Trop. 57 (4): 1141-1152. Epub 2009 December 01.


Se describe la ontogenia y la esporogénesis en H. brevifolia, en material recolectado en el Parque Nacional Natural El Cocuy (Boyacá-Colombia) a 4200m de altitud. Los esporangios se desarrollan de forma basípeta sobre el eje caulinar: los iniciales y juveniles se localizan en el ápice y los adultos a maduros, en la base. El desarrollo se inicia a partir de un grupo de células epidérmicas localizadas en las axilas que forman los microfilos con el eje caulinar. Estas células se dividen activamente por mitosis formando una masa celular externa y otra interna. La primera da origen a la pared del esporangio, de varios estratos celulares; de éstos, el estrato externo desarrolla engrosamientos en las paredes anticlinales y en la periclinal interna. El estrato celular interno se diferencia para formar el tapete secretor. Los demás estratos celulares de la pared se degradan durante la maduración del esporangio. La masa celular interna da origen al tejido esporógeno que forma los esporocitos, que experimentan la meiosis I hasta la etapa de díada. La meiosis II concluye con la formación de tétradas, constituidas por esporas en disposición tetraédrica. Las esporas son foveoladas con abertura trilete y son liberadas del esporangio a través de la dehiscencia.


Subject(s)
Huperzia/physiology , Spores/growth & development , Colombia , Huperzia/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...