Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 917: 170353, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38296076

ABSTRACT

Microplastics (MPs) are known for their ubiquity, having been detected in virtually any environmental compartment. However, indoor MPs concentrations are poorly studied despite being closely related to human exposure. The present study aims to evaluate the presence of MPs in settled atmospheric dust in 60 houses distributed in 12 districts of the metropolitan city of Lima, Peru, and investigate the influence of their geographical location and house characteristics. MPs concentration ranged from 0.01 to 33.9 MPs per mg of dust. Fibers and blue were the most frequent shape and color (98 % and 69 %, respectively). Also, 82 % of the particles were between 500 µm - 5 mm in size. A higher concentration of MPs was identified in the center-south of the city. The houses located on the highest floors (levels 4 to 13 to ground) displayed higher concentrations. MPs were primarily composed of polyester (PET), polypropylene (PP), and ethylene-vinyl acetate (EVA), among others. The polymers identified suggest that MPs derived from the fragmentation of components frequently found in houses, such as synthetic clothing, food storage containers, toys, carpets, floors, and curtains. The incorporation of MPs from the outside into dwellings is not ruled out. Future studies should evaluate the influence of consumption habits and housing characteristics on the abundance of MPs.


Subject(s)
Microplastics , Plastics , Humans , Dust , Food Packaging , Food Storage , Environmental Monitoring
2.
Sci Total Environ ; 901: 165788, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37524177

ABSTRACT

Contamination with anthropogenic debris, such as plastic and paint particles, has been widely investigated in the global marine environment. However, there is a lack of information regarding their presence in marine protected areas (MPAs). In the present study, the abundance, distribution, and chemical characteristics of microplastics (MPs; <5 mm), mesoplastics (MePs; 5-25 mm), and paint particles were investigated in multiple environmental compartments of two MPAs from Peru. The characteristics of MPs across surface water, bottom sediments, and fish guts were similar, primarily dominated by blue fibers. On the other hand, MePs and large MPs (1-5 mm) were similar across sandy beaches. Several particles were composite materials consisting of multiple layers confirmed as alkyd resins by Fourier-transformed infrared spectroscopy, which were typical indicators of marine coatings. The microstructure of paint particles showed differentiated topography across layers, as well as different elemental compositions. Some layers displayed amorphous structures with Ba-, Cr-, and Ti-based additives. However, the leaching and impact of potentially toxic additives in paint particles require further investigation. The accumulation of multiple types of plastic and paint debris in MPAs could pose a threat to conservation goals. The current study contributed to the knowledge regarding anthropogenic debris contamination in MPAs and further elucidated the physical and chemical properties of paint particles in marine environments. While paint particles may look similar to MPs and MePs, more attention should be given to these contaminants in places where intense maritime activity takes place.

3.
Mar Pollut Bull ; 191: 114941, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080019

ABSTRACT

Marine litter is a complex environmental issue threatening the well-being of multiple organisms. In the present study, we present an overlooked pathway by which marine litter interaction with certain ovigerous skates (Family: Rajidae) communities could compromise their survival. We propose that skates from the genus Sympterygia deposit their egg capsules on marine litter substrates by accident, which are then washed ashore still unhatched. We conducted 10 monitoring surveys on three beaches of La Libertad Region, on the north coast of Peru, looking for marine litter conglomerates to determine the presence of egg capsules. We registered a total of 75 marine litter conglomerates, containing 1595 egg capsules, out of which only 15.9 % were presumably hatched, and 15.8 % were still fresh. Fishing materials were identified as the main item in marine litter conglomerates. We conclude that this behavior could contribute to the decline of Sympterygia communities, although further research is needed.


Subject(s)
Environmental Monitoring , Waste Products , Waste Products/analysis , Capsules , Plastics , Hunting , Bathing Beaches
4.
Mar Pollut Bull ; 176: 113474, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35231785

ABSTRACT

The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). Numerous studies have reported the occurrence of PPE in the marine environment. However, their degradation in the environment and consequences are poorly understood. Studies have reported that face masks, the most abundant type of PPE, are significant sources of microplastics due to their fibrous microstructure. The fibrous material (mostly consisting of polypropylene) exhibits physical changes in the environment, leading to its fracture and detachment of microfibers. Most studies have evaluated PPE degradation under controlled laboratory conditions. However, in situ degradation experiments, including the colonization of PPE, are largely lacking. Although ecotoxicological studies are largely lacking, the first attempts to understand the impact of MPs released from face masks showed various types of impacts, such as fertility and reproduction deficiencies in both aquatic and terrestrial organisms.


Subject(s)
COVID-19 , Plastics , Humans , Pandemics , Personal Protective Equipment , SARS-CoV-2
5.
J Hazard Mater ; 426: 128070, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34922133

ABSTRACT

In the present contribution, two nationwide surveys of personal protective equipment (PPE) pollution were conducted in Peru and Argentina aiming to provide valuable information regarding the abundance and distribution of PPE in coastal sites. Additionally, PPE items were recovered from the environment and analyzed by Fourier transformed infrared (FTIR) spectroscopy, Scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), and X-ray diffraction (XRD), and compared to brand-new PPE in order to investigate the chemical and structural degradation of PPE in the environment. PPE density (PPE m-2) found in both countries were comparable to previous studies. FTIR analysis revealed multiple polymer types comprising common PPE, mainly polypropylene, polyamide, polyethylene terephthalate, and polyester. SEM micrographs showed clear weathering signs, such as cracks, cavities, and rough surfaces in face masks and gloves. EDX elemental mapping revealed the presence of elemental additives, such as Ca in gloves and face masks and AgNPs as an antimicrobial agent. Other metals found on the surface of PPE were Mo, P, Ti, and Zn. XRD patterns displayed a notorious decrease in the crystallinity of polypropylene face masks, which could alter its interaction with external contaminants and stability. The next steps in this line of research were discussed.


Subject(s)
COVID-19 , Personal Protective Equipment , Humans , Pandemics , Plastics , SARS-CoV-2
6.
Mar Pollut Bull ; 150: 110686, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31744606

ABSTRACT

Growing evidence has demonstrated that microplastics (MPs) are available for a wide range of marine organisms, with filter-feeding bivalves and crabs being especially vulnerable. The crab Neohelice granulata is considered a key and structuring species in the Bahía Blanca Estuary (BBE) (SW Atlantic) and its ecological role makes this species especially vulnerable to several pollutants. In this study, male specimens of N. granulata and water samples were collected at three sites in the BBE for the presence of MPs. Different types of MPs were found in all the crabs and the water column samples, although the most frequent were fibers <500-1500 µm, mainly blue. This is the first study to identify MPs in the gills and digestive tract of N. granulata. Moreover, gills presented higher total abundances of MPs than the digestive tract, which suggests that in this case the main uptake of MPs would be by adherence to the gills.


Subject(s)
Brachyura , Estuaries , Microplastics/analysis , Water Pollutants, Chemical , Animals , Male , Plastics
SELECTION OF CITATIONS
SEARCH DETAIL
...