Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Physiol Biochem ; 37(6): 2454-63, 2015.
Article in English | MEDLINE | ID: mdl-26666245

ABSTRACT

BACKGROUND: The voltage gated K+ channels Kv1.3 and Kv1.5 contribute to the orchestration of cell proliferation. Kinases participating in the regulation of cell proliferation include protein kinase B (PKB/Akt). The present study thus explored whether PKB/Akt modifies the abundance and function of Kv1.3 and Kv1.5. METHODS: Kv1.3 or Kv1.5 was expressed in Xenopus laevis oocytes with or without wild-type PKB/Akt, constitutively active T308D/S473DPKB/Akt or inactive T308A/S473APKB/Akt. The channel activity was quantified utilizing dual electrode voltage clamp. Moreover, HA-tagged Kv1.5 protein was determined utilizing chemiluminescence. RESULTS: Voltage gated K+ currents were observed in Kv1.3 or Kv1.5 expressing oocytes but not in water-injected oocytes or in oocytes expressing PKB/Akt alone. Co-expression of PKB/Akt or T308D/S473DPKB/Akt, but not co-expression of T308A/S473APKB/Akt significantly increased the voltage gated current in both Kv1.3 and Kv1.5 expressing oocytes. As shown for Kv1.5, co-expression of PKB/Akt enhanced the channel protein abundance in the cell membrane. In Kv1.5 expressing oocytes voltage gated current decreased following inhibition of carrier insertion by brefeldin A (5 µM) to similarly low values in the absence and presence of PKB/Akt, suggesting that PKB/Akt stimulated carrier insertion into rather than inhibiting carrier retrieval from the cell membrane. CONCLUSION: PKB/Akt up-regulates both, Kv1.3 and Kv1.5 K+ channels.


Subject(s)
Kv1.3 Potassium Channel/metabolism , Kv1.5 Potassium Channel/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation , Animals , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...