Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e16259, 2023.
Article in English | MEDLINE | ID: mdl-37868071

ABSTRACT

The entomopathogenic fungus Culicinomyces clavisporus is known to infect and kill mosquito larvae and therefore has been seen as a potential biological control agent against disease vector mosquitoes. Whereas most fungal entomopathogens infect hosts by penetrating the external cuticle, C. clavisporus initiates infection through ingestion (per os). This unique infection strategy suggests that the C. clavisporus genome may be mined for novel pathogenicity factors with potential for vector control. To this end, an Isoseq-based transcriptome analysis was initiated, and resulted in a total of 3,512,145 sequences, with an average length of 1,732 bp. Transcripts assembly and annotation suggested that the C. clavisporus transcriptome lacked the cuticle-degrading proteins that have been associated with other entomopathogenic fungi, supporting the per os pathogenicity process. Furthermore, mining of the sequence data unexpectedly revealed C. clavisporus transcripts homologous to the Hirsutellin toxin. Comparative sequence analyses indicated that the C. clavisporus Hirsutellin predicted protein has retained the canonical molecular features that have been associated with the ribotoxic and insecticidal properties of the original toxin isolated from Hirsutella thompsonii. The identification of an Hirsutellin ortholog in C. clavisporus was supported by phylogenetic analyses demonstrating that Culicinomyces and Hirsutella were closely related genera in the Ophiocordycipitaceae family. Validation of the mosquitocidal activity of this novel C. clavisporus protein has yet to be performed but may help position Hirsutellin orthologs as prime candidates for the development of alternative biocontrol approaches complementing the current toolbox of vector mosquito management strategies.


Subject(s)
Culicidae , Insecticides , Toxins, Biological , Animals , Insecticides/pharmacology , Transcriptome , Phylogeny , Mosquito Vectors
2.
Cancer Immunol Res ; 11(4): 466-485, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36757308

ABSTRACT

Oncolytic virus therapies induce the direct killing of tumor cells and activation of conventional dendritic cells (cDC); however, cDC activation has not been optimized with current therapies. We evaluated the adenoviral delivery of engineered membrane-stable CD40L (MEM40) and IFNß to locally activate cDCs in mouse tumor models. Combined tumor MEM40 and IFNß expression induced the highest cDC activation coupled with increased lymph node migration, increased systemic antitumor CD8+ T-cell responses, and regression of established tumors in a cDC1-dependent manner. MEM40 + IFNß combined with checkpoint inhibitors led to effective control of distant tumors and lung metastases. An oncolytic adenovirus (MEM-288) expressing MEM40 + IFNß  in phase I clinical testing induced cancer cell loss concomitant with enhanced T-cell infiltration and increased systemic presence of tumor T-cell clonotypes in non-small cell lung cancer (NSCLC) patients. This approach to simultaneously target two major DC-activating pathways has the potential to significantly affect the solid tumor immunotherapy landscape.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , CD40 Ligand , CD8-Positive T-Lymphocytes , Dendritic Cells , Immunotherapy , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...