Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 13(3): e0092823, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38385707

ABSTRACT

We present the complete genome sequence of Bradyrhizobium sp. 62B, a strain isolated from the root nodules of peanut plants that grow in central Argentina. The genome consists of 8.15 Mbp, distributed into a chromosome of 7.29 Mbp and a plasmid of 0.86 Mbp.

2.
Microbiol Resour Announc ; 12(10): e0058123, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37772816

ABSTRACT

Here, we report the complete genome sequence of Mesorhizobium mediterraneum R31, a rhizobial strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of 7.25 Mb, distributed into four circular replicons: a chromosome of 6.72 Mbp and three plasmids of 0.29, 0.17, and 0.07 Mbp.

3.
Microbiol Resour Announc ; 12(5): e0002123, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37039639

ABSTRACT

We report the complete genome sequence of Burkholderia ambifaria strain Q53, an environmental rhizobacterium isolated from the rhizosphere of peanut plants. The genome consists of 7.4 Mbp distributed into three circular chromosomes and was determined using a hybrid long- and short-read assembly approach.

4.
J Fungi (Basel) ; 9(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36836317

ABSTRACT

Chickpea (Cicer arietinum L.), one of the most cultivated legumes worldwide, is crucial for the economy of several countries and a valuable source of nutrients. Yields may be severely affected by Ascochyta blight, a disease caused by the fungus Ascochyta rabiei. Molecular and pathological studies have not yet managed to establish its pathogenesis, since it is highly variable. Similarly, much remains to be elucidated about plant defense mechanisms against the pathogen. Further knowledge of these two aspects is fundamental for the development of tools and strategies to protect the crop. This review summarizes up-to-date information on the disease's pathogenesis, symptomatology, and geographical distribution, as well as on the environmental factors that favor infection, host defense mechanisms, and resistant chickpea genotypes. It also outlines existing practices for integrated blight management.

5.
Microbiol Resour Announc ; 11(11): e0077922, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36287006

ABSTRACT

We report the complete genome sequence of Mesorhizobium ciceri strain R30, a rhizobium strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of almost 7 Mb, distributed into two circular replicons: a chromosome of 6.49 Mb and a plasmid of 0.46 Mb.

6.
Microbiol Resour Announc ; 11(8): e0050522, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35852335

ABSTRACT

We present the complete genome sequence of Bradyrhizobium sp. strain C-145, one of the most widely used nitrogen-fixing rhizobacteria for inoculating peanut crops in Argentina. The genome consists of 9.53 Mbp in a single circular chromosome and was determined using a hybrid long- and short-read assembly approach.

7.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105680

ABSTRACT

Sinorhizobium meliloti is a soil bacterium of great agricultural importance because of its ability to fix atmospheric nitrogen in symbiotic association with alfalfa (Medicago sativa) roots. We looked into the involvement of exopolysaccharides (EPS) in its survival when exposed to different environmental stressors, as well as in bacteria-bacteria and bacteria-substrate interactions. The strains used were wild-type Rm8530 and two strains that are defective in the biosynthesis of EPS II: wild-type Rm1021, which has a non-functional expR locus, and mutant Rm8530 expA. Under stress by water deficiency, Rm8530 remained viable and increased in number, whereas Rm1021 and Rm8530 expA did not. These differences could be due to Rm8530's ability to produce EPS II. Survival experiments under saline stress showed that viability was reduced for Rm1021 but not for Rm8530 or Rm8530 expA, which suggests the existence of some regulating mechanism dependent on a functional expR that is absent in Rm1021. The results of salinity-induced stress assays regarding biofilm-forming capacity (BFC) and autoaggregation indicated the protective role of EPS II. As a whole, our observations demonstrate that EPS play major roles in rhizobacterial survival.


Subject(s)
Bacterial Proteins/metabolism , Medicago sativa/microbiology , Nitrogen Fixation/physiology , Plant Roots/microbiology , Salt Stress/physiology , Sinorhizobium meliloti/metabolism , Bacterial Adhesion , Bacterial Proteins/genetics , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Mutation , Nitrogen/metabolism , Polysaccharides, Bacterial/metabolism , Sinorhizobium meliloti/classification , Sinorhizobium meliloti/genetics , Symbiosis/physiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...