Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 102: 129666, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382679

ABSTRACT

Because tuberculosis is still a major health threat worldwide, identification of new drug targets is urgently needed. In this study, we considered type B ribose-5-phosphate isomerase from Mycobacterium tuberculosis as a potential target, and addressed known problems of previous inhibitors in terms of their sensitivity to hydrolysis catalyzed by phosphatase enzymes, which impaired their potential use as drugs. To this end, we synthesized six novel phosphomimetic compounds designed to be hydrolytically stable analogs of the substrate ribose 5-phosphate and the best known inhibitor 5-phospho-d-ribonate. The phosphate function was replaced by phosphonomethyl, sulfate, sulfonomethyl, or malonate groups. Inhibition was evaluated on type A and type B ribose-5-phosphate isomerases, and stability towards hydrolysis using alkaline phosphatase and veal serum was assessed. One of the phosphomimetic analogs, 5-deoxy-5-phosphonomethyl-d-ribonate, emerged as the first strong and specific inhibitor of the M. tuberculosis enzyme that is resistant to hydrolysis.

2.
J Comput Chem ; 37(32): 2770-2782, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27699809

ABSTRACT

Zn-metalloproteins are a major class of targets for drug design. They constitute a demanding testing ground for polarizable molecular mechanics/dynamics aimed at extending the realm of quantum chemistry (QC) to very long-duration molecular dynamics (MD). The reliability of such procedures needs to be demonstrated upon comparing the relative stabilities of competing candidate complexes of inhibitors with the recognition site stabilized in the course of MD. This could be necessary when no information is available regarding the experimental structure of the inhibitor-protein complex. Thus, this study bears on the phosphomannose isomerase (PMI) enzyme, considered as a potential therapeutic target for the treatment of several bacterial and parasitic diseases. We consider its complexes with 5-phospho-d-arabinonohydroxamate and three analog ligands differing by the number and location of their hydroxyl groups. We evaluate the energy accuracy expectable from a polarizable molecular mechanics procedure, SIBFA. This is done by comparisons with ab initio quantum-chemistry (QC) calculations in the following cases: (a) the complexes of the four ligands in three distinct structures extracted from the entire PMI-ligand energy-minimized structures, and totaling up to 264 atoms; (b) the solvation energies of several energy-minimized complexes of each ligand with a shell of 64 water molecules; (c) the conformational energy differences of each ligand in different conformations characterized in the course of energy-minimizations; and (d) the continuum solvation energies of the ligands in different conformations. The agreements with the QC results appear convincing. On these bases, we discuss the prospects of applying the procedure to ligand-macromolecule recognition problems. © 2016 Wiley Periodicals, Inc.


Subject(s)
Hydroxamic Acids/chemistry , Metalloproteins/chemistry , Molecular Dynamics Simulation , Quantum Theory , Sugar Phosphates/chemistry , Zinc/chemistry , Binding Sites , Ligands , Metalloproteins/metabolism , Zinc/metabolism
3.
J Phys Chem B ; 115(25): 8304-16, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21650197

ABSTRACT

Using polarizable molecular mechanics, a recent study [de Courcy et al. J. Am. Chem. Soc., 2010, 132, 3312] has compared the relative energy balances of five competing inhibitors of the FAK kinase. It showed that the inclusion of structural water molecules was indispensable for an ordering consistent with the experimental one. This approach is now extended to compare the binding affinities of four active site ligands to the Type I Zn-metalloenzyme phosphomannose isomerase (PMI) from Candida albicans. The first three ones are the PMI substrate ß-D-mannopyranose 6-phosphate (ß-M6P) and two isomers, α-D-mannopyranose 6-phosphate (α-M6P) and ß-D-glucopyranose 6-phosphate (ß-G6P). They have a dianionic 6-phosphate substituent and differ by the relative configuration of the two carbon atoms C1 and C2 of the pyranose ring. The fourth ligand, namely 6-deoxy-6-dicarboxymethyl-ß-D-mannopyranose (ß-6DCM), is a substrate analogue that has the ß-M6P phosphate replaced by the nonhydrolyzable phosphate surrogate malonate. In the energy-minimized structures of all four complexes, one of the ligand hydroxyl groups binds Zn(II) through a water molecule, and the dianionic moiety binds simultaneously to Arg304 and Lys310 at the entrance of the cavity. Comparative energy-balances were performed in which solvation of the complexes and desolvation of PMI and of the ligands are computed using the Langlet-Claverie continuum reaction field procedure. They resulted into a more favorable balance in favor of ß-M6P than α-M6P and ß-G6P, consistent with the experimental results that show ß-M6P to act as a PMI substrate, while α-M6P and ß-G6P are inactive or at best weak inhibitors. However, these energy balances indicated the malonate ligand ß-6DCM to have a much lesser favorable relative complexation energy than the substrate ß-M6P, while it has an experimental 10-fold higher affinity than it on Type I PMI from Saccharomyces cerevisiae. The energy calculations were validated by comparison with parallel ab initio quantum chemistry on model binding sites extracted from the energy-minimized PMI-inhibitor complexes. We sought to improve the models upon including explicit water molecules solvating the dianionic moieties in their ionic bonds with the Arg304 and Lys310 side-chains. Energy-minimization resulted in the formation of three networks of structured waters. The first water of each network binds to one of the three accessible anionic oxygens. The networks extend to PMI residues (Asp17, Glu48, Asp300) remote from the ligand binding site. The final comparative energy balances also took into account ligand desolvation in a box of 64 waters. They now resulted into a large preference in favor of ß-6DCM over ß-M6P. The means to further augment the present model upon including entropy effects and sampling were discussed. Nevertheless a clear-cut conclusion emerging from this as well as our previous study on FAK kinase is that both polarization and charge-transfer contributions are critical elements of the energy balances.


Subject(s)
Fungal Proteins/chemistry , Ligands , Mannose-6-Phosphate Isomerase/chemistry , Mannosephosphates/chemistry , Water/chemistry , Zinc/chemistry , Amino Acid Sequence , Candida albicans/enzymology , Isomerism , Mannose-6-Phosphate Isomerase/antagonists & inhibitors , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Sequence Alignment , Substrate Specificity , Thermodynamics
4.
Proteins ; 79(1): 203-20, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21058398

ABSTRACT

Type I phosphomannose isomerases (PMIs) are zinc-dependent metalloenzymes involved in the reversible isomerization of D-mannose 6-phosphate (M6P) and D-fructose 6-phosphate (F6P). 5-Phospho-D-arabinonohydroxamic acid (5PAH), an inhibitor endowed with nanomolar affinity for yeast (Type I) and Pseudomonas aeruginosa (Type II) PMIs (Roux et al., Biochemistry 2004; 43:2926-2934), strongly inhibits human (Type I) PMI (for which we report an improved expression and purification procedure), as well as Escherichia coli (Type I) PMI. Its K(i) value of 41 nM for human PMI is the lowest value ever reported for an inhibitor of PMI. 5-Phospho-D-arabinonhydrazide, a neutral analogue of the reaction intermediate 1,2-cis-enediol, is about 15 times less efficient at inhibiting both enzymes, in accord with the anionic nature of the postulated high-energy reaction intermediate. Using the polarizable molecular mechanics, sum of interactions between fragments ab initio computed (SIBFA) procedure, computed structures of the complexes between Candida albicans (Type I) PMI and the cyclic substrate ß-D-mannopyranose 6-phosphate (ß-M6P) and between the enzyme and the high-energy intermediate analogue inhibitor 5PAH are reported. Their analysis allows us to identify clearly the nature of each individual active site amino acid and to formulate a hypothesis for the overall mechanism of the reaction catalyzed by Type I PMIs, that is, the ring-opening and isomerization steps, respectively. Following enzyme-catalyzed ring-opening of ß-M6P by zinc-coordinated water and Gln111 ligands, Lys136 is identified as the probable catalytic base involved in proton transfer between the two carbon atoms C1 and C2 of the substrate D-mannose 6-phosphate.


Subject(s)
Mannose-6-Phosphate Isomerase/antagonists & inhibitors , Mannose-6-Phosphate Isomerase/chemistry , Amino Acid Sequence , Binding, Competitive , Candida albicans/enzymology , Catalytic Domain , Escherichia coli/enzymology , Fructosephosphates/chemistry , Humans , Hydrazines/chemistry , Hydroxamic Acids/chemistry , Kinetics , Mannose-6-Phosphate Isomerase/biosynthesis , Mannosephosphates/chemistry , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Conformation , Sequence Alignment , Sugar Phosphates/chemistry
5.
Bioorg Med Chem ; 17(20): 7100-7, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19783448

ABSTRACT

Non-hydrolyzable d-mannose 6-phosphate analogues in which the phosphate group was replaced by a phosphonomethyl, a dicarboxymethyl, or a carboxymethyl group were synthesized and kinetically evaluated as substrate analogues acting as potential inhibitors of type I phosphomannose isomerases (PMIs) from Saccharomyces cerevisiae and Escherichia coli. While 6-deoxy-6-phosphonomethyl-d-mannose and 6-deoxy-6-carboxymethyl-D-mannose did not inhibit the enzymes significantly, 6-deoxy-6-dicarboxymethyl-D-mannose appeared as a new strong competitive inhibitor of both S. cerevisiae and E. coli PMIs with K(m)/K(i) ratios of 28 and 8, respectively. We thus report the first malonate-based inhibitor of an aldose-ketose isomerase to date. Phosphonomethyl mimics of the 1,2-cis-enediolate high-energy intermediate postulated for the isomerization reaction catalyzed by PMIs were also synthesized but behave as poor inhibitors of PMIs. A polarizable molecular mechanics (SIBFA) study was performed on the complexes of d-mannose 6-phosphate and two of its analogues with PMI from Candida albicans, an enzyme involved in yeast infection homologous to S. cerevisiae and E. coli PMIs. It shows that effective binding to the catalytic site occurs with retention of the Zn(II)-bound water molecule. Thus the binding of the hydroxyl group on C1 of the ligand to Zn(II) should be water-mediated. The kinetic study reported here also suggests the dianionic character of the phosphate surrogate as a likely essential parameter for strong binding of the inhibitor to the enzyme active site.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Mannose-6-Phosphate Isomerase/antagonists & inhibitors , Mannosephosphates/chemical synthesis , Mannosephosphates/pharmacology , Uronic Acids/pharmacology , Chromatography, Ion Exchange , Drug Evaluation, Preclinical , Kinetics , Magnetic Resonance Spectroscopy , Mannose-6-Phosphate Isomerase/chemistry , Mannose-6-Phosphate Isomerase/metabolism , Models, Molecular , Saccharomyces cerevisiae/enzymology , Spectrometry, Mass, Electrospray Ionization , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...