Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson ; 194(2): 222-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18667343

ABSTRACT

A planar nuclear quadrupole resonance (NQR) sensor has been developed. The sensor is resilient to environmental noise and is capable of simultaneous independent multi-frequency operation. The device was constructed as an open multimodal birdcage structure, in which the higher modes, generally not used in magnetic resonance, are utilized for NQR detection. These modes have smooth distributions of the amplitudes of the corresponding radiofrequency magnetic fields everywhere along the sensor's surface. The phases of the fields, on the other hand, are cyclically shifted across the sensor's surface. Noise signals coming from distant sources, therefore, induce equal-magnitude cyclically phase-shifted currents in different parts of the sensor. When such cyclically phase-shifted currents arrive at the mode connection point, they destructively interfere with each other and are cancelled out. NQR signals of polycrystalline or disordered substances, however, are efficiently detected by these modes because they are insensitive to the phases of the excitation/detection. No blind spots exist along the sensor's surface. The sensor can be used for simultaneous detection of one or more substances in locations with environmental noise.


Subject(s)
Artifacts , Computer-Aided Design , Magnetic Resonance Spectroscopy/instrumentation , Magnetics/instrumentation , Substance Abuse Detection/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Magnetic Resonance Spectroscopy/methods , Magnetics/methods , Reproducibility of Results , Sensitivity and Specificity , Substance Abuse Detection/methods
2.
J Magn Reson ; 177(1): 67-73, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16111906

ABSTRACT

A simple Q-damper device for active probe recovery time reduction is introduced along with a straightforward technique for the circuit's component value optimization. The device is inductively coupled to a probe through a coupling transformer positioned away from the main coil, which makes the design independent of the coil type being used. The Q-damper is a tuned circuit, which is resonant at the same frequency as the probe and can be actively interrupted. When the circuit is interrupted, it is detuned and, thereby, is uncoupled from the probe, which operates normally. Turning the device on leads to re-coupling of the circuits and causes splitting of the probe's resonance line, which can be observed through its drive port. A resistance of an appropriate value is introduced into the Q-damper circuit, resulting in smoothing of the resonance splitting into one broad line, representing the coupled system's low-Q state, in which the energy stored in the main coil is efficiently dissipated. The circuit's component values are optimized by monitoring the shape of this low-Q state. Probe recovery time reduction by, approximately, an order of magnitude has been obtained with this device. Application of the device during an NQR experiment led to an increase in the signal-to-noise ratio by a factor of 4.9.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Spectroscopy/instrumentation , Calibration , Equipment Design , Mathematics , Methenamine/chemistry , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...