Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Speech Lang Hear Res ; 63(10): 3539-3559, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32936717

ABSTRACT

Purpose From an anthropological perspective of hominin communication, the human auditory system likely evolved to enable special sensitivity to sounds produced by the vocal tracts of human conspecifics whether attended or passively heard. While numerous electrophysiological studies have used stereotypical human-produced verbal (speech voice and singing voice) and nonverbal vocalizations to identify human voice-sensitive responses, controversy remains as to when (and where) processing of acoustic signal attributes characteristic of "human voiceness" per se initiate in the brain. Method To explore this, we used animal vocalizations and human-mimicked versions of those calls ("mimic voice") to examine late auditory evoked potential responses in humans. Results Here, we revealed an N1b component (96-120 ms poststimulus) during a nonattending listening condition showing significantly greater magnitude in response to mimics, beginning as early as primary auditory cortices, preceding the time window reported in previous studies that revealed species-specific vocalization processing initiating in the range of 147-219 ms. During a sound discrimination task, a P600 (500-700 ms poststimulus) component showed specificity for accurate discrimination of human mimic voice. Distinct acoustic signal attributes and features of the stimuli were used in a classifier model, which could distinguish most human from animal voice comparably to behavioral data-though none of these single features could adequately distinguish human voiceness. Conclusions These results provide novel ideas for algorithms used in neuromimetic hearing aids, as well as direct electrophysiological support for a neurocognitive model of natural sound processing that informs both neurodevelopmental and anthropological models regarding the establishment of auditory communication systems in humans. Supplemental Material https://doi.org/10.23641/asha.12903839.


Subject(s)
Auditory Cortex , Voice , Acoustic Stimulation , Animals , Auditory Perception , Evoked Potentials, Auditory , Humans
2.
Antioxidants (Basel) ; 9(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717779

ABSTRACT

Naturally occurring dietary agents present in a wide variety of plant products, are rich sources of phytochemicals possessing medicinal properties, and thus, have been used in folk medicine for ages to treat various ailments. The beneficial effects of such dietary components are frequently attributed to their anti-inflammatory and antioxidant properties, particularly in regards to their antineoplastic activities. As many tumor types exhibit greater oxidative stress levels that are implicated in favoring autonomous cell growth activation, most chemotherapeutic agents can also enhance tumoral oxidative stress levels in part via generating reactive oxygen species (ROS). While ROS-mediated imbalance of the cellular redox potential can provide novel drug targets, as a consequence, this ROS-mediated excessive damage to cellular functions, including oncogenic mutagenesis, has also been implicated in inducing chemoresistance. This remains one of the major challenges in the treatment and management of human malignancies. Antioxidant-enriched natural compounds offer one of the promising approaches in mitigating some of the underlying mechanisms involved in tumorigenesis and metastasis, and therefore, have been extensively explored in cancer chemoprevention. Among various groups of dietary phytochemicals, polyphenols have been extensively explored for their underlying chemopreventive mechanisms in other cancer models. Thus, the current review highlights the significance and mechanisms of some of the highly studied polyphenolic compounds, with greater emphasis on pancreatic cancer chemoprevention.

SELECTION OF CITATIONS
SEARCH DETAIL
...