Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Photosynth Res ; 48(1-2): 41-6, 1996 May.
Article in English | MEDLINE | ID: mdl-24271284

ABSTRACT

The approach of photocalorimetry to decide on the true quantum requirement of photosynthesis - one of the main issues of the research in the first half of the century and a source of a bitter debate - is described. Bill Arnold's original approach to get into the true answer is reflected from the point of view of present day calorimetric techniques.

2.
Photosynth Res ; 46(1-2): 277-85, 1995 Nov.
Article in English | MEDLINE | ID: mdl-24301593

ABSTRACT

Photosystem I-driven cyclic electron transport was measured in intact cells of Synechococcus sp PCC 7942 grown under different light intensities using photoacoustic and spectroscopic methods. The light-saturated capacity for PS I cyclic electron transport increased relative to chlorophyll concentration, PS I concentration, and linear electron transport capacity as growth light intensity was raised. In cells grown under moderate to high light intensity, PS I cyclic electron transport was nearly insensitive to methyl viologen, indicating that the cyclic electron supply to PS I derived almost exclusively from a thylakoid dehydrogenase. In cells grown under low light intensity, PS I cyclic electron transport was partially inhibited by methyl viologen, indicating that part of the cyclic electron supply to PS I derived directly from ferredoxin. It is proposed that the increased PSI cyclic electron transport observed in cells grown under high light intensity is a response to chronic photoinhibition.

3.
Plant Physiol ; 105(1): 287-294, 1994 May.
Article in English | MEDLINE | ID: mdl-12232202

ABSTRACT

The acclimation of the photosynthetic apparatus to growth irradiance in a mutant strain of Synechococcus sp. PCC 7942 lacking detectable iron superoxide dismutase activity was studied. The growth of the mutant was inhibited at concentrations of methyl viologen 4 orders of magnitude smaller than those required to inhibit the growth of the wild-type strain. An increased sensitivity of photosynthetic electron transport near photosystem I (PSI) toward photooxidative stress was also observed in the mutant strain. In the absence of methyl viologen, the mutant exhibited similar growth rates compared with those of the wild type, even at high growth irradiance (350 [mu]E m-2 s-1) where chronic inhibition of photosystem II (PSII) was observed in both strains. Under high growth irradiance, the ratios of PSII to PSI and of [alpha]-phycocyanin to chlorophyll a were less than one-third of the values for the wild type. In both strains, cellular contents of chlorophyll a, [alpha]-phycocyanin, and [beta]-carotene, as well as the length of the phycobilisome rods, declined with increasing growth irradiance. Only the cellular content of the carotenoid zeaxanthin seemed to be independent of growth irradiance. These results suggest an altered acclimation to growth irradiance in the sodB mutant in which the stoichiometry between PSI and PSII is adjusted to compensate for the loss of PSI efficiency occurring under high growth irradiance. Similar shortening of the phycobilisome rods in the sodB mutant and wild-type strain suggest that phycobilisome rod length is regulated independently of photosystem stoichiometry.

4.
Photosynth Res ; 42(3): 173-83, 1994 Dec.
Article in English | MEDLINE | ID: mdl-24306559

ABSTRACT

When the cyanobacterium Synechococcus sp. Strain PCC 7942 is deprived of an essential macronutrient such as nitrogen, sulfur or phosphorus, cellular phycobiliprotein and chlorophyll contents decline. The level of ß-carotene declines proportionately to chlorophyll, but the level of zeaxanthin increases relative to chlorophyll. In nitrogen- or sulfur-deprived cells there is a net degradation of phycobiliproteins. Otherwise, the declines in cellular pigmentation are due largely to the diluting effect of continued cell division after new pigment synthesis ceases and not to net pigment degradation. There was also a rapid decrease in O2 evolution when Synechococcus sp. Strain PCC 7942 was deprived of macronutrients. The rate of O2 evolution declined by more than 90% in nitrogen- or sulfur-deprived cells, and by approximately 40% in phosphorus-deprived cells. In addition, in all three cases the fluorescence emissions from Photosystem II and its antennae were reduced relative to that of Photosystem I and the remaining phycobilisomes. Furthermore, state transitions were not observed in cells deprived of sulfur or nitrogen and were greatly reduced in cells deprived of phosphorus. Photoacoustic measurements of the energy storage capacity of photosynthesis also showed that Photosystem II activity declined in nutrient-deprived cells. In contrast, energy storage by Photosystem I was unaffected, suggesting that Photosystem I-driven cyclic electron flow persisted in nutrient-deprived cells. These results indicate that in the modified photosynthetic apparatus of nutrient-deprived cells, a much larger fraction of the photosynthetic activity is driven by Photosystem I than in nutrient-replete cells.

5.
Photosynth Res ; 36(3): 149-68, 1993 Jun.
Article in English | MEDLINE | ID: mdl-24318920

ABSTRACT

Recently, a number of techniques, some of them relatively new and many often used in combination, have given a clearer picture of the dynamic role of electron transport in Photosystem I of photosynthesis and of coupled cyclic photophosphorylation. For example, the photoacoustic technique has detected cyclic electron transport in vivo in all the major algal groups and in leaves of higher plants. Spectroscopic measurements of the Photosystem I reaction center and of the changes in light scattering associated with thylakoid membrane energization also indicate that cyclic photophosphorylation occurs in living plants and cyanobacteria, particularly under stressful conditions.In cyanobacteria, the path of cyclic electron transport has recently been proposed to include an NAD(P)H dehydrogenase, a complex that may also participate in respiratory electron transport. Photosynthesis and respiration may share common electron carriers in eukaryotes also. Chlororespiration, the uptake of O2 in the dark by chloroplasts, is inhibited by excitation of Photosystem I, which diverts electrons away from the chlororespiratory chain into the photosynthetic electron transport chain. Chlororespiration in N-starved Chlamydomonas increases ten fold over that of the control, perhaps because carbohydrates and NAD(P)H are oxidized and ATP produced by this process.The regulation of energy distribution to the photosystems and of cyclic and non-cyclic phosphorylation via state 1 to state 2 transitions may involve the cytochrome b 6-f complex. An increased demand for ATP lowers the transthylakoid pH gradient, activates the b 6-f complex, stimulates phosphorylation of the light-harvesting chlorophyll-protein complex of Photosystem II and decreases energy input to Photosystem II upon induction of state 2. The resulting increase in the absorption by Photosystem I favors cyclic electron flow and ATP production over linear electron flow to NADP and 'poises' the system by slowing down the flow of electrons originating in Photosystem II.Cyclic electron transport may function to prevent photoinhibition to the photosynthetic apparatus as well as to provide ATP. Thus, under high light intensities where CO2 can limit photosynthesis, especially when stomates are closed as a result of water stress, the proton gradient established by coupled cyclic electron transport can prevent over-reduction of the electron transport system by increasing thermal de-excitation in Photosystem II (Weis and Berry 1987). Increased cyclic photophosphorylation may also serve to drive ion uptake in nutrient-deprived cells or ion export in salt-stressed cells.There is evidence in some plants for a specialization of Photosystem I. For example, in the red alga Porphyra about one third of the total Photosystem I units are engaged in linear electron transfer from Photosystem II and the remaining two thirds of the Photosystem I units are specialized for cyclic electron flow. Other organisms show evidence of similar specialization.Improved understanding of the biological role of cyclic photophosphorylation will depend on experiments made on living cells and measurements of cyclic photophosphorylation in vivo.

6.
Proc Natl Acad Sci U S A ; 89(18): 8716-20, 1992 Sep 15.
Article in English | MEDLINE | ID: mdl-1528884

ABSTRACT

The enzyme superoxide dismutase is ubiquitous in aerobic organisms where it plays a major role in alleviating oxygen-radical toxicity. An insertion mutation introduced into the iron superoxide dismutase locus (designated sodB) of the cyanobacterium Synechococcus sp. PCC 7942 created a mutant strain devoid of detectable iron superoxide dismutase activity. Both wild-type and mutant strains exhibited similar photosynthetic activity and viability when grown with 17 mumol.m-2.s-1 illumination in liquid culture supplemented with 3% carbon dioxide. In contrast, the sodB mutant exhibited significantly greater damage to its photosynthetic system than the wild-type strain when grown under increased oxygen tension or with methyl viologen. Although damage occurs at both photosystems I and II, it is primarily localized at photosystem I in the sodB mutant. Growth in 100% molecular oxygen for 24 hr decreased photoacoustically measured energy storage in 3-(3,4-dichlorophenyl)-1,1-dimethylurea and abolished the fluorescence state 2 to state 1 transition in the sodB mutant, indicating interruption of cyclic electron flow around photosystem I. Analysis of the flash-induced absorption transient at 705 nm indicated that the interruption of cyclic electron flow occurred in the return part of the cycle, between the two [4 Fe-4 S] centers of photosystem I, FA and FB, and cytochrome f. Even though the sodB mutant was more sensitive to damage by active oxygen than wild-type cells, both strains were equally sensitive to the photoinhibition of photosystem II caused by exposure to strong light.


Subject(s)
Cyanobacteria/enzymology , Photosynthetic Reaction Center Complex Proteins/metabolism , Superoxide Dismutase/physiology , Electron Transport , Genes, Bacterial , Light , Mutagenesis, Insertional , Oxygen/physiology , Photosynthesis , Restriction Mapping , Spectrometry, Fluorescence
7.
Photosynth Res ; 33(3): 203-12, 1992 Sep.
Article in English | MEDLINE | ID: mdl-24408664

ABSTRACT

The possibility of a Photosystem II (PS II) cyclic electron flow via Cyt b-559 catalyzed by carbonylcyanide m-chlorophenylhydrazone (CCCP) was further examined by studying the effects of the PS II electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ) on the light-induced changes of the redox states of Cyt b-559. Addition to barley thylakoids of micromolar concentrations of DCBQ completely inhibited the changes of the absorbance difference corresponding to the photoreduction of Cyt b-559 observed either in the presence of 10 µM ferricyanide or after Cyt b-559 photooxidation in the presence of 2 µM CCCP. In CCCP-treated thylakoids, the concentration of photooxidized Cyt b-559 decreased as the irradiance of actinic light increased from 2 to 80 W m(-2) but remained close to the maximal concentration (0.53 photooxidized Cyt b-559 per photoactive Photosystem II) in the presence of 50 µM DCBQ. The stimulation of Cyt b-559 photooxidation in parallel with the inhibition of its photoreduction caused by DCBQ demonstrate that the extent of the light-induced changes of the redox state of Cyt b-559 in the presence of CCCP is determined by the difference between the rates of photooxidation and photoreduction of Cyt b-559 occuring simultaneously in a cyclic electron flow around PS II.We also observed that the Photosystem I electron acceptor methyl viologen (MV) at a concentration of 1 mM barely affected the rate and extent of the light-induced redox changes of Cyt b-559 in the presence of either FeCN or CCCP. Under similar experimental conditions, MV strongly quenched Chl-a fluorescence, suggesting that Cyt b-559 is reduced directly on the reducing side of Photosystem II.

8.
Plant Physiol ; 95(3): 731-9, 1991 Mar.
Article in English | MEDLINE | ID: mdl-16668047

ABSTRACT

The brown alga Macrocystis pyrifera (giant kelp) was studied by a combination of fluorescence spectroscopy at 77 kelvin, room temperature modulated fluorimetry, and photoacoustic techniques to determine how light energy is partitioned between photosystems I and II in states 1 and 2. Preillumination with farred light induced the high fluorescence state (state 1) as determined by fluorescence emission spectra measured at 77K and preillumination with green light produced a low fluorescence state (state 2). Upon transition from state 1 to state 2, there was an almost parallel decrease of all of the fluorescence bands at 693, 705, and 750 nanometers and not the expected decrease of fluorescence of photosystem II and increase of fluorescence in photosystem I. The momentary level of room temperature fluorescence (fluorescence in the steady state, F(s)), as well as the fluorescence levels corresponding to all closed (F(m)) or all open (F(o)) reaction-center states were measured following the kinetics of the transition between states 1 and 2. Calculation of the distribution of light 2 (540 nanometers) between the two photosystems was done assuming both the ;separate package' and ;spill-over' models. Unlike green plants, red algae, and cyanobacteria, the changes here of the light distribution were rather small in Macrocystis so that there was approximately an even distribution of the photosystem II light at 540 nanometers to photosystem I and photosystem II in both states 1 and 2. Photoacoustic measurements confirmed the conclusions reached as a result of fluorescence measurements, i.e. an almost equal distribution of light-2 quanta to both photosystems in each state. This conclusion was reached by analyzing the enhancement phenomenon by light 2 of the energy storage measured in far red light. The effect of light 1 in decreasing the energy storage measured in light 2 is also consistent with this conclusion. The photoacoustic experiments showed that there was a significant energy storage in light 1 which could be explained by cyclic electron transport around photosystem I. From a quantitative analysis of the enhancement effect of background light 2 (maximum enhancement of 1.4-1.5) it was shown that around 70% of light 1 was distributed to this cyclic photosystem I transport.

9.
Photosynth Res ; 27(2): 151-6, 1991 Feb.
Article in English | MEDLINE | ID: mdl-24414578

ABSTRACT

A photoacoustic cell assembly is described that is permeable to CO2 and other gases but not water vapor. As a replacement for the usually employed solid cover, this cell uses a cover containing a small fritted glass disk that holds a small piece of 6.4 µm Teflon film against the sample.With the above arrangement it was possible to increase the rate of O2 evolution measured photoacoustically about 3 times in Zea mays leaves and about 1.7 times in Phaseolus vulgaris leaves upon adding CO2 to the gas stream. The extent of energy storage was also enhanced with supplemental CO2 in Zea and Ulva but less so in Phaseolus. The maximum improvements of photosynthetic activities were obtained when the gas stream contained 2.5-5% CO2. These high concentrations were presumably necessary as the result of a high resistance to diffusion through the gas-permeable cover.

10.
Photosynth Res ; 27(3): 179-87, 1991 Mar.
Article in English | MEDLINE | ID: mdl-24414690

ABSTRACT

The nature of interaction of cytochrome b-559 high potential (HP) with electron transport on the reducing side of photosystem II was investigated by measuring the susceptibility of cytochrome b-559HP to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under different conditions. Submicromolar DCMU concentrations decreased the rate of absorbance change corresponding to cytochrome b-559HP photoreduction while the amplitude was lowered at higher concentrations (up to 10 µM). Appreciable extents of cytochrome b-559HP photoreduction were observed at DCMU concentrations which completely abolished the electron transport from water to methyl viologen under the same experimental conditions. However, the susceptibility of cytochrome b-559HP to DCMU increased with the degree of cytochrome b-559HP oxidation, induced either by ferricyanide or by illumination of low intensity (2 W/m(2)) of red light in the presence of 2 µM carbonyl cyanide-m-chlorophenylhydrazone. Also, the DCMU inhibition was more severe when the pH increased from 6.5 to 8.5, indicating that the unprotonated form of cytochrome b-559HP is more susceptible to DCMU. These results demonstrate that cytochrome b-559HP can accept electrons prior to the QB site, probably via QA although both QA and QB can be involved to various extents in this reaction. We suggest that the redox state and the degree of protonation of cytochrome b-559HP alter its interaction with the reducing side of photosystem II.

11.
Plant Physiol ; 94(3): 926-34, 1990 Nov.
Article in English | MEDLINE | ID: mdl-16667873

ABSTRACT

Energy storage by cyclic electron flow through photosystem I (PSI) was measured in vivo using the photoacoustic technique. A wide variety of photosynthetic organisms were considered and all showed measurable energy storage by PSI-cyclic electron flow except for higher plants using the C-3 carbon fixation pathway. The capacity for energy storage by PSI-cyclic electron flow alone was found to be small in comparison to that of linear and cyclic electron flows combined but may be significant, nonetheless, under conditions when photosystem II is damaged, particularly in cyanobacteria. Light-induced dynamics of energy storage by PSI-cyclic electron flow were evident, demonstrating regulation under changing environmental conditions.

12.
Plant Cell ; 2(9): 913-24, 1990 Sep.
Article in English | MEDLINE | ID: mdl-1967057

ABSTRACT

In cyanobacteria, the water-soluble cytochrome c-553 functions as a mobile carrier of electrons between the membrane-bound cytochrome b6-f complex and P-700 reaction centers of Photosystem I. The structural gene for cytochrome c-553 (designated cytA) of the cyanobacterium Synechococcus sp. PCC 7942 was cloned, and the deduced amino acid sequence was shown to be similar to known cyanobacterial cytochrome c-553 proteins. A deletion mutant was constructed that had no detectable cytochrome c-553 based on spectral analyses and tetramethylbenzidine-hydrogen peroxide staining of proteins resolved by polyacrylamide gel electrophoresis. The mutant strain was not impaired in overall photosynthetic activity. However, this mutant exhibited a decreased efficiency of cytochrome f oxidation. These results indicate that cytochrome c-553 is not an absolute requirement for reducing Photosystem I reaction centers in Synechococcus sp. PCC 7942.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/enzymology , Cytochrome c Group/genetics , Nitrite Reductases/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Base Sequence , Cloning, Molecular , Cyanobacteria/genetics , Cytochrome c Group/chemistry , Cytochrome c Group/metabolism , DNA Probes/genetics , Gene Expression Regulation, Bacterial/physiology , Genes, Bacterial/genetics , Molecular Sequence Data , Mutagenesis/genetics , Nitrite Reductases/chemistry , Nitrite Reductases/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Restriction Mapping
13.
Photosynth Res ; 23(3): 319-23, 1990 Mar.
Article in English | MEDLINE | ID: mdl-24419655

ABSTRACT

Steady state millisecond delayed fluorescence (DLE) of intact leaves and cyanobacterial cells was measured continuously with a Becquerel-type phosphoroscope while cooling from the growth temperature to near 0°C or heating from the low to high temperature at about 1°C/min. The temperature of maximum DLE depended upon light intensity. In Anacystis grown at 28 and 38°C DLE maximum occurred near 15 and 23°C, respectively, which are the temperatures where thylakoid membrane lipids have been shown to pass from the liquid crystalline to the mixed solid-liquid crystalline state in these cyanobacteria. In some plants such as field mallow DLE increased continuously as the temperature decreased, whereas in others it rose to a maximum, then decreased. Chilling-sensitive plants such as tomato, sweet potato and Trichospermum, showed DLE maxima around 10-14°C while the chilling-resistant plant, oat, had a maximum near 4°C and field mallow had no maximum above 0°C.

14.
Plant Physiol ; 91(4): 1494-500, 1989 Dec.
Article in English | MEDLINE | ID: mdl-16667207

ABSTRACT

Many studies have shown that membrane lipids of chilling-sensitive plants begin lateral phase separation (i.e. a minor component begins freezing) at chilling temperatures and that chilling-sensitive plants are often of tropical origin. We tested the hypothesis that membranes of tropical plants begin lateral phase separation at chilling temperatures, and that plants lower the temperature of lateral phase separation as they invade cooler habitats. To do so we studied plant species in one family confined to the tropics (Piperaceae) and in three families with both tropical and temperate representatives (Fabaceae [Leguminosae], Malvaceae, and Solanaceae). We determined lateral phase separation temperatures by measuring the temperature dependence of fluorescence from trans-parinaric acid inserted into liposomes prepared from isolated membrane phospholipids. In all families we detected lateral phase separations at significantly higher temperatures, on average, in species of tropical origin. To test for associated physiological effects we measured the temperature dependence of delayed light emission (DLE) by discs cut from the same leaves used for lipid analysis. We found that the temperature of maximum DLE upon chilling was strongly correlated with lateral phase separation temperatures, but was on average approximately 4 degrees C lower. We also tested the hypothesis that photosystem II (PSII) (the most thermolabile component of photosynthesis) of tropical plants tolerates higher temperatures than PSII of temperate plants, using DLE and F(o) chlorophyll fluorescence upon heating to measure the temperature at which PSII thermally denatured. We found little difference between the two groups in PSII denaturation temperature. We also found that the temperature of maximum DLA upon heating was not significantly different from the critical temperature for F(o) fluorescence. Our results indicate that plants lowered their membrane freezing temperatures as they radiated from their tropical origins. One interpretation is that the tendency for membranes to begin freezing at chilling temperatures is the primitive condition, which plants corrected as they invaded colder habitats. An alternative is that membranes which freeze at temperatures only slightly lower than the minimum growth temperature confer an advantage.

16.
Plant Physiol ; 86(3): 946-50, 1988 Mar.
Article in English | MEDLINE | ID: mdl-16666014

ABSTRACT

The effects of light treatment (2000 micromole photons per square meter per second) for varying periods (up to 60 minutes) on chlorophyll fluorescence characteristics and light-limited rates of O(2) evolution were examined in two Porphyra species. Brief light exposures (5-60 seconds) produced a large decrease in variable fluorescence which was not accompained by photoinhibition of light-limited O(2) evolution rates. This rapid decrease in variable fluorescence was suppressed by carbonylcyanide m-chlorophenylhydrazone, indicating that it was related to formation of a proton gradient across the thylakiod membranes. A second phase of fluorescence quenching started after 5 minutes of illumination in the case of the shade species, Porphyra nereocystis Anderson, and after 30 minutes of illumination in the case of the sun species, Porphyra perforata J. Agardh. The rate of fluorescence quenching in the second phase was similar to the rate of photoinhibition of light-limited O(2) evolution in both cases. The dark recovery of variable fluorescence in light-treated plants was also biphasic consisting of a rapid first phase and a slower second phase in both the Porphyra species. Recovery of P. perforata was more complete than that of P. nereocystis over the same recovery period. This greater capacity for recovery could represent a mechanism by which P. perforata is more resistant to photoinhibition than P. nereocystis.

17.
Arch Biochem Biophys ; 259(1): 124-30, 1987 Nov 15.
Article in English | MEDLINE | ID: mdl-3120642

ABSTRACT

Light-induced absorption changes in an oxygen-evolving photosystem II (PS II) preparation from the thermophilic cyanobacterium Synechococcus sp. were analyzed using continuous illumination which caused the reduction of both QA (first stable quinone electron acceptor) and QB (second quinone electron acceptor of photosystem II). In this photosystem II preparation in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) the amount of QA was estimated to be 1 per 42 chlorophylls. In the absence of DCMU, plastoquinone (1.68 per QA) was photoreduced to plastohydroquinone within a few seconds, indicating that QB is reduced and protonated during this period. An electrochromic band shift centered around 685 nm was observed with and without DCMU. The extent of this band shift caused by QB reduction per electron was about a third or half of that caused by QA reduction. A significant amount of cytochrome b-559 (0.86 per QA) was photoreduced. Only 60% of the photoreduction of cytochrome b-559 was inhibited by a DCMU concentration that inhibited electron transfer beyond QB, indicating that the site of the reduction of cytochrome b-559 is located before the QB site and possibly on the donor side of PS II.


Subject(s)
Chlorophyll/metabolism , Cyanobacteria/metabolism , Cytochrome b Group/metabolism , Photosystem II Protein Complex , Plant Proteins/metabolism , Quinones/metabolism , Darkness , Hot Temperature , Kinetics , Light , Light-Harvesting Protein Complexes , Oxidation-Reduction , Oxygen/metabolism , Photosynthetic Reaction Center Complex Proteins , Spectrophotometry, Ultraviolet
18.
Photosynth Res ; 11(1): 71-87, 1987 Jan.
Article in English | MEDLINE | ID: mdl-24435464

ABSTRACT

Two characteristic temperatures were identified from measurements of the temperature dependence of O2 evolution by Chlorella vulgaris and Anacystis nidulans: T1, the threshold temperature for inhibition of O2 evolution under saturating light conditions, and T2, the upper temperature limit for O2 evolution. Measurement of delayed light emission from photosystem II (PSII) showed that it passed through a maximum at T1 and was virtually eliminated on heating the samples to T2. Related changes were observed in low-temperature (77K) fluoresence emission spectra. Heat-stress had little effect on the absorption properties of the cells at temperatures below T1 but incubation at higher temperatures, particularly under high-light conditions, resulted in extensive absorption losses. An analysis of these measurements suggests that this increased susceptibility to photobleaching is triggered by an inhibition of the flow of reducing equivalents from PSII that normally serves to protect the light-harvesting apparatus of the cells from photo-oxidation. Adaptation to higher growth temperatures resulted in increases in the values of T1 and T2 for Anacystis nidulans but not for Chlorella vulgaris.

19.
Plant Physiol ; 80(4): 843-7, 1986 Apr.
Article in English | MEDLINE | ID: mdl-16664729

ABSTRACT

Studies were conducted to document the effects on morphology and energy transfer in photosynthesis of severe tissue dehydration induced either by air-drying or by immersing the tissues of two Porphyra species in hyperosmotic solutions. These studies showed that the dehydration-tolerant intertidal alga, Porphyra perforata J.Ag., was almost unaffected by either of these treatments, while the dehydration-sensitive Porphyra nereocystis Anders. was damaged similary by both treatments. Damage to that sensitive species was characterized by ruptured organelles as seen by interference microscopy as well as by increased fluorescence emission at 682 nanometers emanating from allophycocyanin. These results suggest that a disruption of energy transfer between allophycocyanin and chlorophyll a occurs because of the damage to membranes following tissue dehydration, and that the increase in the yield of phycobilin fluorescence is a good indicator of these phenomena. Thus, air-drying and osmotic-dehydration appear to have similar physiological consequences in a dehydration-sensitive alga but almost no effect in a tolerant species.

20.
Photosynth Res ; 10(1-2): 75-92, 1986 Jan.
Article in English | MEDLINE | ID: mdl-24435278

ABSTRACT

Measurements of electron transport activity point to the occurrence of major changes in the organisation of the photosynthetic apparatus of heat-stressed chloroplasts. One of the consequences of these changes is shown to be a greatly increased susceptibility of chlorophyll to photobleaching. Despite the fact that the threshold temperature for this photobleaching coincides closely with that for the inhibition of PSII activity, the bleached components were found to be specifically associated with PSI. This increased susceptibility of PSI pigments to photobleaching is shown to be a direct consequence of an interruption of the flow of reductants from PSII to PSI that would normally protect PSI from photooxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...