Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Main subject
Publication year range
1.
J Chem Phys ; 159(24)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38131485

ABSTRACT

We used inelastic x-ray scattering methods to measure the terahertz spectrum of density fluctuations of ethanol in both liquid and solid phases. The results of a Bayesian inference-based lineshape analysis with a multiple excitation model and the comparison with a previous similar analysis on water indicate that the different structures induced by hydrogen bonds in ethanol and water have a profound influence on the respective dynamic responses, the latter being characterized by longer living and better resolved high-frequency acoustic excitations. In addition, we compare these findings with those obtained with an alternative approach based on the exponential expansion theory and ensuring sum rules fulfillment, demonstrating that the model's choice directly impacts the number of spectral modes detected.

2.
J Chem Phys ; 158(13): 134509, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37031110

ABSTRACT

Understanding how molecules engage in collective motions in a liquid where a network of bonds exists has both fundamental and applied relevance. On the one hand, it can elucidate the "ordering" role of long-range correlations and inspire new avenues to control such order to implement sound manipulation. Water represents an ideal investigation case to unfold these general aspects, and, across the decades, it has been the focus of thorough scrutiny. Despite this investigative effort, the spectrum of terahertz density fluctuations of water largely remains a puzzle for condensed matter physicists. To unravel it, we compare previous scattering measurements of water spectra with new ones on ice. Owing to the unique asset of Bayesian inference, we draw a more detailed portrayal of the phonon response of ice. The comparison with the one of liquid water challenges the current understanding of density fluctuations in water, or more in general, of any networked liquid.

3.
J Phys Condens Matter ; 34(22)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35263728

ABSTRACT

Excitation, detection, and control of coherent THz magnetic excitation in antiferromagnets are challenging problems that can be addressed using ever shorter laser pulses. We study experimentally excitation of magnetic dynamics at THz frequencies in an antiferromagnetic insulator CoF2by sub-10 fs laser pulses. Time-resolved pump-probe polarimetric measurements at different temperatures and probe polarizations reveal laser-induced transient circular birefringence oscillating at the frequency of 7.45 THz and present below the Néel temperature. The THz oscillations of circular birefringence are ascribed to oscillations of the magnetic moments of Co2+ions induced by the laser-driven coherentEgphonon mode via the THz analogue of the transverse piezomagnetic effect. It is also shown that the same pulse launches coherent oscillations of the magnetic linear birefringence at the frequency of 3.4 THz corresponding to the two-magnon mode. Analysis of the probe polarization dependence of the transient magnetic linear birefringence at the frequency of the two-magnon mode enables identifying its symmetry.

4.
Rev Sci Instrum ; 88(5): 053905, 2017 May.
Article in English | MEDLINE | ID: mdl-28571465

ABSTRACT

To date, the BRISP spectrometer represents the state-of-the-art for every instrument aiming to perform Brillouin neutron scattering. Exploiting accurate ray-tracing McStas simulations, we investigate an improved configuration of the BRISP primary spectrometer to provide a higher flux at the sample position, while preserving all the present capabilities of the instrument. This configuration is based on a neutron guide system and is designed to fit the instrument platform with no modifications of the secondary spectrometer. These evaluations show that this setup can achieve a flux gain factor ranging from 3 to 6, depending on the wavelength. This can expand the experimental possibilities of BRISP towards smaller samples, possibly using also complex sample environments.

5.
Phys Rev E ; 95(1-1): 012141, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208346

ABSTRACT

We show that by exploiting multi-Lorentzian fits of the self-dynamic structure factor at various wave vectors it is possible to carefully perform the Q→0 extrapolation required to determine the spectrum Z(ω) of the velocity autocorrelation function of a liquid. The smooth Q dependence of the fit parameters makes their extrapolation to Q=0 a simple procedure from which Z(ω) becomes computable, with the great advantage of solving the problems related to resolution broadening of either experimental or simulated self-spectra. Determination of a single-particle property like the spectrum of the velocity autocorrelation function turns out to be crucial to understanding the whole dynamics of the liquid. In fact, we demonstrate a clear link between the collective mode frequencies and the shape of the frequency distribution Z(ω). In the specific case considered in this work, i.e., liquid Au, analysis of Z(ω) revealed the presence, along with propagating sound waves, of lower frequency modes that were not observed before by means of dynamic structure factor measurements. By exploiting ab initio simulations for this liquid metal we could also calculate the transverse current-current correlation spectra and clearly identify the transverse nature of the above mentioned less energetic modes. Evidence of propagating transverse excitations has actually been reported in various works in the recent literature. However, in some cases, like the present one, these modes are difficult to detect in density fluctuation spectra. We show here that the analysis of the single-particle dynamics is able to unveil their presence in a very effective way. The properties here shown to characterize Z(ω), and the information in it contained therefore allow us to identify it with the density of states (DoS) of the liquid. We demonstrate that only nonhydrodynamic modes contribute to the DoS, thus establishing its purely microscopic origin. Finally, as a by-product of this work, we provide our estimate of the self-diffusion coefficient of liquid gold just above melting.

6.
Phys Rev E ; 94(2-1): 023305, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27627410

ABSTRACT

When the dynamics of liquids and disordered systems at mesoscopic level is investigated by means of inelastic scattering (e.g., neutron or x ray), spectra are often characterized by a poor definition of the excitation lines and spectroscopic features in general and one important issue is to establish how many of these lines need to be included in the modeling function and to estimate their parameters. Furthermore, when strongly damped excitations are present, commonly used and widespread fitting algorithms are particularly affected by the choice of initial values of the parameters. An inadequate choice may lead to an inefficient exploration of the parameter space, resulting in the algorithm getting stuck in a local minimum. In this paper, we present a Bayesian approach to the analysis of neutron Brillouin scattering data in which the number of excitation lines is treated as unknown and estimated along with the other model parameters. We propose a joint estimation procedure based on a reversible-jump Markov chain Monte Carlo algorithm, which efficiently explores the parameter space, producing a probabilistic measure to quantify the uncertainty on the number of excitation lines as well as reliable parameter estimates. The method proposed could turn out of great importance in extracting physical information from experimental data, especially when the detection of spectral features is complicated not only because of the properties of the sample, but also because of the limited instrumental resolution and count statistics. The approach is tested on generated data set and then applied to real experimental spectra of neutron Brillouin scattering from a liquid metal, previously analyzed in a more traditional way.

8.
Article in English | MEDLINE | ID: mdl-26274162

ABSTRACT

Inelastic neutron scattering was applied to measure the acoustic-type excitations in the molten alkali halide rubidium bromide. For molten RbBr neutron scattering is mainly sensitive to the number density fluctuation spectrum and is not influenced by charge fluctuations. Utilizing a dedicated Brillouin scattering spectrometer, we focused on the small-wave-vector range. From inelastic excitations in the spectra a dispersion relation was obtained, which shows a large positive dispersion effect. This frequency enhancement is related to a viscoelastic response of the liquid at high frequencies. Towards small wave vectors we identify the transition to hydrodynamic behavior. This observation is supported by a transition of the sound velocity from a viscoelastic enhanced value to the adiabatic speed of sound for the acoustic-type excitations. Furthermore, the spectrum transforms into a line shape compatible with a prediction from hydrodynamics.

9.
J Phys Condens Matter ; 24(6): 064102, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22277241

ABSTRACT

We studied the collective excitations in an aqueous solution of lithium chloride over the temperature range of 270-205 K using neutron and x-ray Brillouin scattering. Both neutron and x-ray experiments revealed the presence of low- and high-frequency excitations, similar to the low- and high-frequency excitations in pure water. These two excitations were detectable through the entire temperature range of the experiment, at all probed values of the scattering momentum transfer (0.2 Å(-1) < Q < 1.8 Å(-1)). A wider temperature range was investigated using elastic intensity neutron and x-ray scans. Clear evidence of the crossover in the dynamics of the water molecules in the solution was observed in the single-particle relaxational dynamics on the µeV (nanosecond) time scale, but not in the collective dynamics on the meV (picosecond) time scale.

10.
J Chem Phys ; 131(19): 194502, 2009 Nov 21.
Article in English | MEDLINE | ID: mdl-19929055

ABSTRACT

We report on small-angle x-ray scattering measurements on liquid water aimed at characterizing the pressure evolution of its large-scale structure. Diffraction profiles have been fitted assuming a Lorentzian dependence on the exchanged momentum. As a result, we observe an anomalous behavior of the diffracted intensity that tends to disappear, increasing either the pressure or the temperature. This effect is discussed in detail and imputed to the ability of hydrostatic pressure to weaken hydrogen bonds.

11.
J Chem Phys ; 131(3): 034508, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19624210

ABSTRACT

The structure of deuterated liquid n-hexane has been investigated at room temperature by neutron diffraction and molecular dynamics simulations. By carrying out a careful analysis of the measurements, experimental data were obtained in very good agreement with the simulated data. This allowed a thorough analysis of the simulation results aiming at the evaluation of the partial, intra-, and intermolecular components of the n-hexane structure. We finally compare the intramolecular differential cross sections calculated from the most probable n-hexane molecular configurations with the measured and simulated data.


Subject(s)
Hexanes/chemistry , Computer Simulation , Models, Chemical , Molecular Structure , Neutron Diffraction , Quantum Theory , Temperature
12.
Phys Rev Lett ; 87(21): 215504, 2001 Nov 19.
Article in English | MEDLINE | ID: mdl-11736350

ABSTRACT

The ion dynamics of liquid mercury was investigated by inelastic neutron scattering. By exploiting an optimized high-resolution ( approximately 1 meV) experimental configuration, the dynamic response function was accurately measured. Collective excitations extending up to 0.6 A(-1) were observed with an associated velocity of 2100+/-80 m/s. This value is notably greater than the sound velocity, but it is provided by a simple Bohm-Staver calculation. The latter finding emphasizes those electron-related features in the ion dynamics, which are common to systems as different as polyvalent and alkali metals.

SELECTION OF CITATIONS
SEARCH DETAIL
...