Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 167: 163-173, 2018 02.
Article in English | MEDLINE | ID: mdl-29051013

ABSTRACT

Retinal detachments create two pathological surfaces, the surface of the outer neural retinal, and an apical retinal-pigmented epithelium (RPE) surface. The physicochemical properties of these two new surfaces are poorly understood. At a molecular level little is known how detachments form, how to optimize reattachment, or prevent extension of the detachment. A major limitation is lack of information about the biophysical consequences of the retina-RPE separation. The primary challenge is determining the molecular properties of the pathological interface surfaces. Here, using detached bovine retina, we show that this hurdle can be overcome through a combination of biophysical and ultrastructural approaches. The outer surface of freshly detached bovine neural retina, and isolated molecular components of the outer retina were subjected to: 1) Contact angle goniometry to determine the critical surface tension of the outer retinal surface, isolated insoluble interphotoreceptor matrix (IPM) and purified interphotoreceptor retinoid binding protein (IRBP); 2) Multiple attenuated internal reflectance infrared (MAIR-IR) spectroscopy was used to characterize the molecular composition of the retinal surface. MAIR-IR depth penetration was established through ellipsometric measurement of barium-stearate films. Light microscopy, immunohistochemistry and electron microscopy defined the structures probed spectroscopically. Furthermore, the data were correlated to IR spectra of docosahexaenoic acid, hyaluronan, chondroitin-6-sulfate and IRBP, and imaging by IR-microscopy. We found that the retinal critical surface tension is 24 mN/m, similar to isolated insoluble IPM and lower than IRBP. Barium-stearate calibration studies established that the MAIR-IR spectroscopy penetration depth was 0.2 µm. Ultrastructural observations and MAIR-IR studies of isolated outer retina components determined that the pericellular IPM coating the outer retinal surface is primarily responsible for these surface properties. The critical surface tension of detached bovine retina is dictated not by the outer segments, but by a pericellular IPM covering the outer segment tips.


Subject(s)
Cell Adhesion/physiology , Extracellular Matrix/physiology , Eye Proteins/metabolism , Retinal Detachment/metabolism , Retinal Pigment Epithelium/metabolism , Retinol-Binding Proteins/metabolism , Animals , Cattle , Immunohistochemistry , Microscopy, Electron, Transmission , Spectrophotometry, Infrared , Surface Properties , Surface Tension
2.
PDA J Pharm Sci Technol ; 67(5): 512-32, 2013.
Article in English | MEDLINE | ID: mdl-24084661

ABSTRACT

During the past decade, rapid microbiological methods (RMMs) have continued to make inroads into the pharmaceutical and medical device industries. This has led to the development of guidelines for the validation of alternative microbiological methods for both quantitative and qualitative applications. Many studies regarding RMMs have focused on testing performed with planktonic microorganisms. In some applications there is the possibility that microorganisms may also be present as biofilms. When evaluating an RMM, consideration should be given to the potential for biofilm formation within the context of the application and whether microorganisms derived from biofilm would influence the response of the method. This study reflects the evaluation of an RMM with both planktonic microorganisms and microorganisms derived from a mixed culture biofilm. LAY ABSTRACT: Many new rapid microbiological methods (RMMs) have been developed that have the potential to replace conventional microbiological methods in a wide range of applications including sterility testing, microbial enumeration, environmental monitoring, microbial identification, and other areas. Qualification of these new methods is frequently based on testing performed with planktonic (non-aggregated) microorganisms. However, microorganisms can aggregate together to form biofilms in both natural and manufacturing environments. Purified water systems in particular may be susceptible to the development of biofilms. Because the properties of microorganisms in a biofilm may differ from those in a planktonic state, qualification of an RMM with microorganisms derived from a relevant biofilm model may be appropriate depending on the application and the potential for biofilm formation. This study describes the evaluation of one such RMM, the Chemunex ScanRDI®, with both planktonic microorganisms and microorganisms derived from a mixed culture biofilm model.


Subject(s)
Biofilms , Plankton , Culture Media , Microbiological Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...