Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 189: 116651, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33248332

ABSTRACT

River flow regimes have been transformed by groundwater and surface water management operations globally, prompting widespread ecological responses. Yet, empirical evidence quantifying the simultaneous effects of groundwater and surface water management operations on freshwater ecosystems remains limited. This study combines a multi-decadal freshwater invertebrate dataset (1995-2016) with groundwater model outputs simulating the effects of different anthropogenic flow alterations (e.g. groundwater abstraction, effluent water returns) and river discharges. A suite of flow alteration- and flow-ecology relationships were modelled that tested different invertebrate community responses (taxonomic, functional, flow response guilds, individual taxa). Most flow alteration-ecology relationships were not statistically significant, highlighting the absence of consistent, detectable ecological responses to long-term water management operations. A small number of significant statistical models provided insights into how flow alterations transformed specific ecological assets; including Ephemeroptera, Plecoptera and Trichoptera taxa which are rheophilic in nature being positively associated with groundwater abstraction effects reducing river discharges by 0-15%. This represents a key finding from a water resource management operation perspective given that such flow alteration conditions were observed on average in over two-thirds of the study sites examined. In a small number of instances, specific invertebrate responses displayed relative declines associated with the most severe groundwater abstraction effects and artificial hydrological inputs (predominantly effluent water returns). The strongest flow-ecology relationships were recorded during spring months, when invertebrate communities were most responsive to antecedent minimum and maximum discharges, and average flow conditions in the preceding summer months. Results from this study provide new evidence indicating how groundwater and surface water resources can be managed to conserve riverine ecological assets. Moreover, the ensemble of flow alteration- and flow-ecology relationships established in this study could be used to guide environmental flow strategies. Such findings are of global importance given that future climatic change and rising societal water demands are likely to further transform river flow regimes and threaten freshwater ecosystems.


Subject(s)
Groundwater , Rivers , Animals , Ecosystem , Invertebrates , Water , Water Supply
2.
Sci Total Environ ; 728: 138052, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32361104

ABSTRACT

In recent decades many studies have proven the paramount impact of flow regimes on the structure of lotic ecosystems, both through extreme events (i.e. floods and droughts) but also during intermediate flows, which temporarily and spatially regulate the habitat availability. Human demand for water is steadily increasing and scientists are challenged to define ecosystem needs clearly enough to guide policies and management strategies. However, field studies demonstrated that a variety of interacting factors, such as, presence of barriers (e.g. dams) and temporal changes in habitat structure affect the abundance, composition and distribution of fish assemblages. This work based on quantile regression tested hypotheses to elucidate the effect of antecedent hydrological conditions on fish communities. A large monitoring database collecting and homogenizing the existing information on fish fauna in the Júcar River Basin District (Eastern Iberian Peninsula) was gathered and used to evaluate biological metrics (species richness, Capture Per Unit Effort-CPUE, and CPUE ratio over the total CPUE) related to life history strategies (i.e. periodic, opportunistic or equilibrium) and species origin (i.e. native, translocated or alien). The resulting dataset was complemented with diverse indicators of the measured daily discharge at the nearest gauging site. Most of the significant relationships confirmed the role of antecedent hydrological conditions as limiting factors, although other environmental factors likely play additional roles. In general, richness and abundance of alien species showed the higher proportion of significant associations, particularly spring flows and annual minima and maxima. These flow-ecology relationships shall be particularly useful to manage ecological responses to hydrological alteration. They also provide with clear ecological foundations for developing environmental flows assessments in Mediterranean river basins worldwide, using holistic approaches which can harmonise eco-hydrological approaches with smaller-scale and habitat-based ecohydraulics methods, especially under the current climate trends.


Subject(s)
Ecosystem , Rivers , Animals , Climate , Fishes , Hydrology
3.
Sci Total Environ ; 648: 144-152, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30114585

ABSTRACT

Treatment wetlands (TWs) have shown good capacity in dye removal from textile wastewater. However, the high hydraulic retention times (HRTs) required by these solutions and the connected high area requirements, remain a big drawback towards the application of TWs for dye treatment at full scale. Aerated TWs are interesting intensified solutions that attempt to reduce the TW required area. Therefore, an aerated CW pilot plant, composed of a 20 m2 horizontal subsurface flow TW (HF) and a 21 m2 Free Water System (FWS), equipped with aeration pipelines, was built and monitored to investigate the potential reduction of required area for dye removal from the effluent wastewater of a centralized wastewater treatment plant (WWTP). During a 8 months long study, experimenting with different hydraulic retention times (HRTs - 1.2, 2.6 and 3.5 days) and aeration modes (intermittent and continuous), the pilot plant has shown a normal biological degradation for organic matter and nutrients, while the residual dye removal has been very low, as demonstrated by the absorbance measure at three wavelengths: at 426 nm (blue) the removal varies from -55% at influent absorbance of 0.010 to 41% at 0.060; at 558 nm (yellow) the removal is negative at 0.005 (-58%) and high at higher influent concentrations (72% at 0.035 of absorbance for the inlet); at 660 nm (red) -82% of removal efficiency was obtained at influent absorbance of 0.002 and 74% at 0.010. These results are a consequence of the biological oxidation processes taking place in the WWTP, so that the residual dye seems to be resistant to further aerobic degradation. Therefore, TWs enhanced by aeration can provide only a buffer effect on peak dye concentrations.

4.
Chemosphere ; 91(5): 629-34, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23363621

ABSTRACT

Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value.


Subject(s)
Coloring Agents/chemistry , Oxidants, Photochemical/chemistry , Ozone/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Color , Textiles , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...