Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Adv Colloid Interface Sci ; 179-182: 1-4, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22840784
2.
J Colloid Interface Sci ; 361(1): 170-7, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21658702

ABSTRACT

This work reports on coalescence in oil-in-water Pickering emulsions subjected to simple shear flow. The emulsions were stabilized by silanized fumed silica particles forming layers a few hundred nanometers thick around drops that are tens of micrometers in size. The drop size and particle concentration in the emulsions were fixed, while the salt concentration was varied to adjust the colloidal interactions between the drops and particles. At rest the oil drops do not coalesce. The susceptibility of the drops to orthokinetic coalescence was found to depend on the extent of particle flocculation in the attached particle layer. The evolution of the drop size with time and shear rate was consistent with phenomenological models used to describe the behavior of emulsions under shear.

3.
Langmuir ; 26(22): 17218-24, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20945854

ABSTRACT

The wettability of a titania surface, partially covered with octadecyltrihydrosilane, has been investigated as a function of solution pH. The results show that surface charge affects both static wettability and wetting kinetics. The static contact angle decreases above and below the point of zero charge of the titania surface in a Lippman-like manner as the pH is altered. The dependence of dynamic contact angle on velocity is also affected by pH. The molecular-kinetic theory (MKT) is used to interpret the dynamic contact angle data. The frequency of molecular displacement κ(0) strongly varies with surface charge, whereas the mean molecular displacement length λ is essentially unaffected. There is an exponential dependence of contact-line friction upon work of adhesion, which is varied simply by altering the pH.

4.
Phys Chem Chem Phys ; 12(43): 14527-33, 2010 Nov 21.
Article in English | MEDLINE | ID: mdl-20931115

ABSTRACT

The contact between fine hydrophilic α-Al(2)O(3) particles and nitrogen bubbles was studied as a function of solution composition in single bubble capture experiments, where the bubble collection efficiency was measured. The surface charges of both bubble and particle were controlled by varying the electrolyte concentration and pH of the solution. In all experiments the bubbles were negatively charged while the α-Al(2)O(3) particles were either negatively (above pH of the isoelectric point, pH(IEP)) or positively (below pH(IEP)) charged. The collection efficiency was found to be strongly influenced by the surface charge of the particles. The maximum collection efficiency occurred when the bubble and particle were oppositely charged (at low pH values) and at low salt concentration, i.e. when a long range attractive electrostatic interaction is present. In the case where both bubble and particle were of the same charge, the collection efficiency was near to zero within experimental error and was not influenced by either salt concentration or pH. This is the first experimental proof of the concept of 'contactless flotation', first proposed by Derjaguin and Dukhin in 1960, with far reaching implications from minerals processing to biology.


Subject(s)
Aluminum Oxide/chemistry , Nitrogen/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Static Electricity , Wettability
5.
Langmuir ; 26(20): 15865-74, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20853820

ABSTRACT

The adsorption of carboxymethyl cellulose (CMC) onto a hydrophobic self-assembled monolayer has been characterized using the quartz crystal microbalance (with dissipation monitoring, QCM-D). Adsorption was studied as a function of initial solution conditions. CMC adsorbs to a greater extent at high ionic strength (10(-1) M KCl as opposed to 10(-2) M KCl) or low pH (3 as opposed to 9). The solution conditions that yielded the lowest initial adsorbed amount (10(-2) M KCl, pH 9) were used as a reference to investigate the response of the adsorbed layer to a switch in solution conditions after adsorption (i.e., to higher ionic strength (10(-1) M KCl) or lower pH (pH 3)). The adsorbed layer released significant amounts of hydration water after each solution switch, as determined by the QCM-D measurements. This expulsion of hydration water was fully reversible. For the two solution switches, reducing the solution pH resulted in a more pronounced change in the amount of hydration water within the adsorbed CMC, accompanied by a distinct conformational change, as determined from a QCM D-f plot. In addition to studying adsorption using QCM-D, the effect of adsorbed CMC on surface hydrophobicity has been investigated using captive bubble contact angle measurements. The effect of the polymer on the contact angle of the surface was seen to be greatest when adsorbed at low pH or at higher ionic strength. CMC was also seen to have a significantly enhanced ability to reduce the surface hydrophobicity after both the ionic strength and pH switches, lowering the advancing water contact angle by 6 and 23° and the receding water contact angle by 10 and 40° for the ionic strength and pH switches, respectively. As with the change in hydration water content, the change in the contact angle of the polymer-coated surface following the solution switches was reversible.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Hydrophobic and Hydrophilic Interactions , Adsorption , Hydrogen-Ion Concentration , Kinetics , Osmolar Concentration , Quartz Crystal Microbalance Techniques , Solutions , Surface Properties , Wettability
6.
J Colloid Interface Sci ; 349(2): 537-43, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20573356

ABSTRACT

The remarkable stability of nanoparticles attached to oil-water interfaces in macroemulsions hinders controlled detachment of these particles from emulsions. In this work it is shown that adding surfactant molecules which preferentially adsorb at the oil-water interface displaces nanoparticles from the interface. Surfactant adsorption at the oil-water interface is energetically favoured and readily occurs on mixing nanoparticle-stabilised oil-in-water emulsions with surfactant solutions. Depending on the surfactant concentration, there is a significant reduction in the interfacial tension. Hence there is substantial fragmentation of the oil droplets and foaming of the emulsion during mixing. Surfactant concentrations above the critical micelle concentration are required to achieve complete interfacial displacement and hence recovery of the nanoparticles from the emulsions. The effects of surfactant addition have important implications for tailoring the interfacial composition of emulsions.

7.
J Colloid Interface Sci ; 348(2): 460-8, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20537656

ABSTRACT

The foamability of a triblock copolymer solution was strongly influenced by the presence of particles. The stability of the foam was evaluated by measuring the foam volume, the drainage of water and particles, and the bubble size as a function of time. The higher stability of foams produced with hydrophilic quartz particles, compared with hydrophobic graphite particles, was related to the presence of quartz aggregates in the lamellae and Plateau borders reducing water drainage, and therefore thin film rupture and bubble coalescence. The copolymer adsorbed slightly more on the hydrophobic graphite, causing the particles to disperse and drain, with the water out of the foam, whereas the hydrophilic quartz aggregated and remain in the lamellar and Plateau borders of the foam.

8.
J Colloid Interface Sci ; 345(2): 417-26, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20163801

ABSTRACT

The adsorption of three dextrin-based polymers, regular wheat dextrin (Dextrin TY), phenyl succinate dextrin (PS Dextrin), and styrene oxide dextrin (SO Dextrin) on a model hydrophobic surface, consisting of a mixed alkanethiol layer on gold, has been characterized using the quartz crystal microbalance with dissipation monitoring (QCM-D). The three polymers exhibited varying affinities and capacity for adsorption on the hydrophobic substrate. Atomic force microscope (AFM) imaging of the polymer layers indicates that all three polymers fully cover the surface. The effect of the three polymers on the static contact angle of the surface was studied using captive bubble contact angle measurements. The three polymers were seen to reduce the receding contact angle by similar amounts (approximately 14°) in spite of having varying adsorbed amounts and differences in adsorbed layer water content. Although no differences were observed in the ability of the polymers to reduce the static contact angle, measurements of the dynamic contact angle between a rising air bubble and the polymer covered substrate yielded stark differences between the polymers, with one polymer (SO Dextrin) slowing the dewetting by an order of magnitude more than the other two polymers. The differences in dewetting behavior correlate with the adsorbed layer characteristics determined by QCM-D and AFM. The role of the dynamic and static contact angle in the performance of a polymer as depressant is discussed.

9.
J Colloid Interface Sci ; 342(1): 205-9, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19939400

ABSTRACT

We have studied the stability and structure of emulsions formed in the presence of colloidal mixtures of partially hydrophobic titania particles and hydrophilic silica particles. On their own, the titania particles attached strongly to the oil-water interface and stabilised emulsions, while the silica particles did not attach to the interface. Adding silica particles to the titania dispersions enhanced coalescence processes during emulsion formation, except under mixing conditions that favoured particle heteroaggregation. The destabilisation of the emulsions was linked to the presence of silica particles in the particle layers at the interface.

10.
J Liposome Res ; 19(1): 29-36, 2009.
Article in English | MEDLINE | ID: mdl-19515005

ABSTRACT

The encapsulation and release kinetics of guanosine from liposomes and polyethylene glycol (PEG)-modified liposomes are reported. Specifically, the influence of PEG chain length, PEGylation level, lipid type, drug-loading level, temperature, and solution conditions (i.e., salt and pH effects) on the rate and mechanism for release have been determined. Increasing PEGylation significantly reduced the guanosine release kinetics; this is more significant for greater molecular weight PEG and is correlated with the PEG layer thickness. Further, the mechanism for guanosine release changed from diffusion to interfacial control as the PEG level increased. The interfacial structure introduced by PEG also increased the activation energy required for guanosine transport across the lipid bilayer from 14 to 22 kJ mol(-1). Findings from this study provide further insight into optimizing the formulation of Stealth liposomes.


Subject(s)
Guanosine/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Polyethylene Glycols/chemistry , Hot Temperature , Kinetics
11.
Langmuir ; 25(8): 4514-21, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19256468

ABSTRACT

The adsorption of a modified polyacrylamide on gold surfaces coated with varying proportions of -CH3- and -OH-terminated alkanethiols (producing substrates of varying hydrophobicity: thetac=75, 98, and 119 degrees), was investigated using quartz crystal microbalance with dissipation (QCM-D), tapping-mode atomic force microscopy (TM-AFM), and captive bubble contact angle measurements. The QCM-D data for the polymer adsorbing on the different substrates indicates that the polymer adsorbs faster and to a greater extent on surfaces with higher hydrophobicity. Dissipation data from the QCM-D suggests that the adsorbed polymer undergoes a conformational change when adsorbing onto the substrates of higher hydrophobicity, forming a less rigid extended layer as the adsorption progresses toward the maximum adsorbed amount. AFM imaging of the adsorbed layer illustrates that the polymer layer is incomplete on all three substrates, and that the underlying substrate hydrophobicity has a role in determining the morphology (distribution, coverage, and thickness) of the adsorbed layer. Contact angle measurements of the polymer-coated substrates show variation in the ability of the polymer to reduce the hydrophobicity of the substrates. The role of coverage and distribution of adsorbed polymer on the surface hydrophobicity reduction is discussed.

12.
J Colloid Interface Sci ; 329(1): 173-81, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18929369

ABSTRACT

We investigated the structure and stability of dodecane-in-water emulsions stabilised by partially hydrophobised silica particles after dilution of the emulsions in solutions of sodium dodecyl sulfate and sodium chloride. The emulsions were stable to coalescence on dilution in salt solutions, but did cream over time. The rate and extent of creaming gradually decreased as the salt concentration in the diluted emulsion increased. Dilution in low concentrations of the anionic surfactant did not affect the emulsion stability to coalescence or alter the creaming behaviour of the emulsion. At surfactant concentrations above the critical micelle concentration, however, the rate and extent of creaming and flocculation of the drops were enhanced.

13.
Colloids Surf B Biointerfaces ; 67(1): 85-91, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18799295

ABSTRACT

A combination of complementary analytical techniques has provided valuable information on the physicochemical properties of lipid-DNA complexes such as their size, shape, structure and surface charge. The experimental conditions for producing small and stable lipid-DNA complexes were determined. These complexes consist of spherical primary particles of approximately 60 nm in diameter connected to each other by DNA strands to form small clusters of approximately 70-200 nm in diameter. At high salt concentrations these complexes were not stable and aggregated. Several methods were used to stabilise the lipid-DNA complexes at physiological salt concentrations.


Subject(s)
DNA/chemistry , Lipids/chemistry , DNA/metabolism , Electrophoresis , Light , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Scattering, Radiation , Sodium Chloride , Transfection
14.
J Colloid Interface Sci ; 323(2): 410-9, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18452938

ABSTRACT

Although surfactants and particles are often mixed together in emulsions, the contribution of each species to the stabilisation of the oil-water interface is poorly understood. We report the results of investigations into the formation of emulsions from solutions of surfactant in oil and aqueous suspensions of laponite. Depending on the salt concentration in the aqueous suspensions, the laponite dispersed as individual disc-shaped particles, 30 nm in diameter, or flocculated into aggregates tens of micrometres in diameter. At the concentrations studied, the flocculated particles alone stabilized oil-in-water emulsions. Synergistic interactions between the particles and octadecylamine at the oil-water interface reduced the average emulsion drop size, while antagonistic interactions with octadecanoic acid enhanced coalescence processes in the emulsions. The state of particle dispersion had dramatic effects on the emulsions formed. Measurements of the oil-water interfacial tension revealed the origins of the interactions between the surfactants and particles.

15.
J Colloid Interface Sci ; 322(1): 168-72, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18405911

ABSTRACT

Single bubbles of very pure N2, He, air and CO2 were formed in a quiescent environment in ultra-clean water, with diameters ranging from 10 to 100 mum. Their terminal rise velocities were measured by high-speed video microscopy. For N2, He and air, excellent agreement with the Hadamard-Rybczynski (H-R) equation was observed, indicating that slip was occurring at the liquid-vapor interface. For CO2 bubbles with diameters less than 60 microm, the terminal rise velocities exceeded those predicted by the H-R equation. This effect was ascribed to the enhanced solubility of CO2 compared with the other gases examined. The presence of a diffusion boundary layer may be responsible for the increased terminal velocity of very small CO2 bubbles.


Subject(s)
Gases , Water/chemistry , Adsorption , Air , Carbon Dioxide , Diffusion , Helium , Microscopy , Nitrogen , Solubility , Surface Properties , Volatilization
16.
Phys Chem Chem Phys ; 9(48): 6327-32, 2007 Dec 28.
Article in English | MEDLINE | ID: mdl-18060162

ABSTRACT

The kinetics of adsorption of CO(2) molecules dissolved in aqueous solution onto a hydrophobised silica surface were investigated using a quartz crystal microbalance (QCM). The results of this investigation were compared with those obtained earlier from tapping mode atomic force microscopy (TMAFM) under the same experimental conditions (J. Yang, J. Duan, D. Fornasiero, J. Ralston, J. Phys. Chem. B., 2003, 107(25), 6139-6147; ref. 1). The QCM results represent the early stage of CO(2) gas adsorption (<20 min), before CO(2) gas bubbles adsorbed on the surface can be directly observed by TMAFM. The QCM results confirmed our observation from TMAFM imaging: that CO(2) gas molecules present in solution only adsorb on silica when its surface is hydrophobic. More importantly, the results showed that gas adsorption/bubble growth undergoes two consecutive kinetic processes: a slow and a fast adsorption process.


Subject(s)
Carbon Dioxide/chemistry , Gold/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Adsorption , Crystallization , Electrodes , Hydrophobic and Hydrophilic Interactions , Kinetics , Microscopy, Atomic Force/methods , Solutions/chemistry , Surface Properties , Time Factors , Water/chemistry
17.
J Colloid Interface Sci ; 286(2): 526-35, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15897067

ABSTRACT

The colloid stability of synthetic titania particles was studied as a function of KCl concentration at pH values of 6.3, 6.7, and 8.4, using static light scattering to obtain stability ratios. Standard DLVO theory was then used to calculate the stability ratios as a function of salt concentration. Reasonable agreement between theory and experiment could only be obtained if an effective interaction radius, corresponding to surface asperities on the titania particles, was used in the calculation. High-resolution TEM images suggest that the effective interaction radius corresponds to the size of surface crystallites formed during synthesis.

18.
J Colloid Interface Sci ; 286(2): 719-29, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15897090

ABSTRACT

The foam behavior of three polypropylene glycols covering the molecular weight range between 192 and 725 g/mol has been examined. Static and dynamic surface tension data, as well as bubble size distribution and retention time in the foam, were incorporated into a simple model of foam stability. The latter clearly indicates that surface tension differences between the plateau border and lamellar region adjacent to the bubble surface are the dominant factor in controlling foamability, causing liquid flow in the direction opposite to liquid drainage, a process termed the Marangoni effect.

19.
Colloids Surf B Biointerfaces ; 36(3-4): 147-53, 2004 Aug 01.
Article in English | MEDLINE | ID: mdl-15276630

ABSTRACT

Interfacial interactions between liposomes and the solid-liquid interface (i.e. a ZnSe internal reflection element, modified to mimic a biological surface) were studied by Fourier transform infrared (FTIR) spectroscopy in attenuated total reflectance (ATR) mode. Both conventional liposomes, containing lecithin and cholesterol and Stealth liposomes containing poly(ethylene)glycol (PEG)5000- or PEG2000-lipids were investigated. IR bands due to the liposome components were observed to increase with time and enabled the liposome adsorption kinetics and thermodynamics to be quantified. The liposome solution conditions, surface properties and compositions have all been shown to influence liposome adsorption. Free energies of adsorption were determined to be in the range from -10.0 to -11.0 kJ mol(-1) and slightly reduced by PEG incorporation. The adsorption rate constant is decreased with increased solution pH and decreased ionic strength; this reflects the importance of electrostatics in controlling liposome adsorption. Increasing the level and molecular weight of PEG incorporation in the liposomes significantly reduced both the rate and extent of liposome adsorption; steric hindrance is considered to play a key role. Findings from this research will improve the understanding of liposome interaction during drug delivery, give insight into the actions of liposomes in the body and may form the basis for improved liposome formulations.


Subject(s)
Liposomes , Spectroscopy, Fourier Transform Infrared , Adsorption , Kinetics , Thermodynamics
20.
J Colloid Interface Sci ; 274(1): 33-40, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15120275

ABSTRACT

The effects of functional groups on polymer adsorption onto titania pigment particles have been investigated as a function of pH and ionic strength using polyacrylic acid and modified polyacrylamides. The polyacrylamides include the homopolymer, an anionic copolymer with hydroxyl and carboxylate group substitution, and a nonionic copolymer with hydroxyl group substitution. Adsorption isotherms and infrared spectroscopy were used to examine the polymer-pigment interactions. The adsorption of the polyacrylic acid and anionic polyacrylamide on titania pigment is greatest when electrostatic repulsion is absent or reduced. At low pH values, below the pigment isoelectric point (IEP), or at high ionic strength, the adsorption density of the anionic polymers on titania pigment is high, while at higher pH values above the pigment IEP, the adsorption density decreases. But the adsorption of nonionic polymers on titania pigment is not influenced by either ionic strength or pH. Acrylamide groups were found to hydrogen bond with the titania pigment surface, independent of pH. With the inclusion of hydroxyl functional groups into the polyacrylamide chain, the polymer adsorption density increased without increased adsorption affinity. Carboxylate functional groups in the anionic polymers strongly interact with the pigment surface, producing the highest adsorption density at low pH values. All polymers exhibit Langmuir adsorption behavior with hydrogen bonding found as the dominant mechanism of adsorption in addition to electrostatic interaction occurring for the anionic polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...