Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39282298

ABSTRACT

Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart failure syndromes remains mechanistically unexamined. We observed mis-localization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by R120G mutation in the cognate chaperone protein, CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine-59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phospho-mimetic mutation of serine-59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity, and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knock-in was sufficient to induce desmin mis-localization and myocardial protein aggregates, while S59A CRYAB knock-in rescued left ventricular systolic dysfunction post-myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine-59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.

2.
JACC Basic Transl Sci ; 7(3): 223-243, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35411325

ABSTRACT

Mitochondria are essential for cardiac myocyte function, but damaged mitochondria trigger cardiac myocyte death. Although mitophagy, a lysosomal degradative pathway to remove damaged mitochondria, is robustly active in cardiac myocytes in the unstressed heart, its mechanisms and physiological role remain poorly defined. We discovered a critical role for TRAF2, an innate immunity effector protein with E3 ubiquitin ligase activity, in facilitating physiological cardiac myocyte mitophagy in the adult heart, to prevent inflammation and cell death, and maintain myocardial homeostasis.

3.
JCI Insight ; 4(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31672943

ABSTRACT

Lysosomes are at the epicenter of cellular processes critical for inflammasome activation in macrophages. Inflammasome activation and IL-1ß secretion are implicated in myocardial infarction (MI) and resultant heart failure; however, little is known about how macrophage lysosomes regulate these processes. In mice subjected to cardiac ischemia/reperfusion (IR) injury and humans with ischemic cardiomyopathy, we observed evidence of lysosomal impairment in macrophages. Inducible macrophage-specific overexpression of transcription factor EB (TFEB), a master regulator of lysosome biogenesis (Mϕ-TFEB), attenuated postinfarction remodeling, decreased abundance of proinflammatory macrophages, and reduced levels of myocardial IL-1ß compared with controls. Surprisingly, neither inflammasome suppression nor Mϕ-TFEB-mediated attenuation of postinfarction myocardial dysfunction required intact ATG5-dependent macroautophagy (hereafter termed "autophagy"). RNA-seq of flow-sorted macrophages postinfarction revealed that Mϕ-TFEB upregulated key targets involved in lysosomal lipid metabolism. Specifically, inhibition of the TFEB target, lysosomal acid lipase, in vivo abrogated the beneficial effect of Mϕ-TFEB on postinfarction ventricular function. Thus, TFEB reprograms macrophage lysosomal lipid metabolism to attenuate remodeling after IR, suggesting an alternative paradigm whereby lysosome function affects inflammation.


Subject(s)
Autophagy-Related Protein 5/physiology , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Macrophages/metabolism , Myocardial Infarction/physiopathology , Ventricular Dysfunction , Animals , Humans , Male , Mice , Mice, Inbred C57BL
4.
J Biol Chem ; 294(44): 16374-16384, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31527079

ABSTRACT

Microtubules are cytoskeletal polymers that perform diverse cellular functions. The plus ends of microtubules promote polymer assembly and disassembly and connect the microtubule tips to other cellular structures. The dynamics and functions of microtubule plus ends are governed by microtubule plus end-tracking proteins (+TIPs). Here we report that the Arabidopsis thaliana SPIRAL1 (SPR1) protein, which regulates directional cell expansion, is an autonomous +TIP. Using in vitro reconstitution experiments and total internal reflection fluorescence microscopy, we demonstrate that the conserved N-terminal region of SPR1 and its GGG motif are necessary for +TIP activity whereas the conserved C-terminal region and its PGGG motif are not. We further show that the N- and C-terminal regions, either separated or when fused in tandem (NC), are sufficient for +TIP activity and do not significantly perturb microtubule plus-end dynamics compared with full-length SPR1. We also found that exogenously expressed SPR1-GFP and NC-GFP label microtubule plus ends in plant and animal cells. These results establish SPR1 as a new type of intrinsic +TIP and reveal the utility of NC-GFP as a versatile microtubule plus-end marker.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/physiology , Microtubules/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Microtubule-Associated Proteins/genetics , Plant Proteins/metabolism , Protein Binding
5.
J Am Heart Assoc ; 8(4): e010866, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30773991

ABSTRACT

Background Mutations in αB-crystallin result in proteotoxic cardiomyopathy with desmin mislocalization to protein aggregates. Intermittent fasting ( IF ) is a novel approach to activate transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in the myocardium. We tested whether TFEB activation can be harnessed to treat advanced proteotoxic cardiomyopathy. Methods and Results Mice overexpressing the R120G mutant of αB-crystallin in cardiomyocytes ( Myh6-Cry ABR 120G) were subjected to IF or ad-lib feeding, or transduced with adeno-associated virus- TFEB or adeno-associated virus-green fluorescent protein after development of advanced proteotoxic cardiomyopathy. Adeno-associated virus-short hairpin RNA-mediated knockdown of TFEB and HSPB 8 was performed simultaneously with IF . Myh6-Cry ABR 120G mice demonstrated impaired autophagic flux, reduced lysosome abundance, and mammalian target of rapamycin activation in the myocardium. IF resulted in mammalian target of rapamycin inhibition and nuclear translocation of TFEB with restored lysosome abundance and autophagic flux; and reduced aggregates with normalized desmin localization. IF also attenuated left ventricular dilation and myocardial hypertrophy, increased percentage fractional shortening, and increased survival. Adeno-associated virus- TFEB transduction was sufficient to rescue cardiomyopathic manifestations, and resulted in reduced aggregates and normalized desmin localization in Myh6-Cry ABR 120G mice. Cry ABR 120G-expressing hearts demonstrated increased interaction of desmin with αB-crystallin and reduced interaction with chaperone protein, HSPB 8, compared with wild type, which was reversed by both IF and TFEB transduction. TFEB stimulated autophagic flux to remove protein aggregates and transcriptionally upregulated HSPB 8, to restore normal desmin localization in Cry ABR 120G-expressing cardiomyocytes. Short hairpin RNA-mediated knockdown of TFEB and HSPB 8 abrogated IF effects, in vivo. Conclusions IF and TFEB activation are clinically relevant therapeutic strategies to rescue advanced R120G αB-crystallin mutant-induced cardiomyopathy by normalizing desmin localization via autophagy-dependent and autophagy-independent mechanisms.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cardiomyopathies/genetics , DNA, Mitochondrial/genetics , Desmin/metabolism , Mutation , alpha-Crystallin B Chain/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cardiomyopathies/diagnosis , Cardiomyopathies/metabolism , DNA Mutational Analysis , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , alpha-Crystallin B Chain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL