Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Allergy Asthma Immunol ; 20(5): 525-536, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34664812

ABSTRACT

More than 99% of cervical cancers are associated with human papillomaviruses (HPVs) worldwide. Current HPV vaccines are safe, highly immunogenic, with effective immunity against specific HPV types. However, DNA vaccines are a new appealing platform which can be considered for designing the HPV vaccines. This study aimed to construct a recombinant eukaryotic expression plasmid containing L1 of HPV-18, tissue plasminogen activators (tPA), and pan HLA DR-binding epitope (PADRE) genes into the pVAX1 vector. The L1, tPA, and PADRE genes were amplified in a thermocycler. The polymerase chain reaction (PCR) products were cloned and insertion of the genes was confirmed using colony PCR, restriction enzymes analysis, and sequencing methods. Indirect immunofluorescence, RT-PCR, and western blot assays were applied to identify the target gene in HEK-293 cells. Total IgG and its isotypes in immunized mice were measured by enzyme-linked immunosorbent assay technique. Western blot analysis showed a protein band of about 67.5 kDa in supernatant and cell lysate of transfected cells. The results of mice immunization with different constructs (group 1: the pVAX-L1, group 2: pVAX-tPA-PADRE-L1, group 3: pVAX1, and group 4: PBS as controls) indicated that the pVAX1-tPA-PADRE-L1 construct induced a significantly higher level of total IgG than pVAX1-L1 (p=0.003). In conclusion, pVAX1-tPA-PADRE-L1 recombinant plasmid is a highly immunogenic construct and suggests as a promising candidate for vaccine development against HPV type 18 in low-middle-income countries.


Subject(s)
Capsid Proteins/immunology , Human papillomavirus 18/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/immunology , Vaccine Development , Vaccines, DNA/immunology , Animals , Antibodies, Viral/immunology , Antibody Formation , Antigens, Viral/genetics , Antigens, Viral/immunology , Capsid Proteins/genetics , Disease Models, Animal , Genetic Engineering , HEK293 Cells , Human papillomavirus 18/genetics , Humans , Immunization , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Papillomavirus Vaccines/genetics , Vaccines, DNA/genetics
2.
Cancer Cell Int ; 19: 278, 2019.
Article in English | MEDLINE | ID: mdl-31708689

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are involved in different pathogenesis pathways including cancer pathogenesis. The adenoma-carcinoma pathway in colorectal cancer may involve the aberrant and variable gene expression of regulatory RNAs. This study was conducted to analyse the expression and prognosis prediction ability of two natural antisense transcripts, protein kinase C theta antisense RNA 1 (PRKCQ-AS1), and special AT-rich sequence binding protein 1 antisense RNA 1 (SATB1-AS1) in colorectal low-grade adenoma, advanced adenoma, and adenocarcinomas. METHODS: In this study, from two RNA-seq analyses of CCAT1-ko cells and colorectal carcinoma biopsies having diminished and increased levels of CCAT1 transcription, respectively, we nominated two antisense lncRNAs of PRKCQ-AS1 and SATB1-AS1. Samples from colorectal low-grade adenomas, advanced adenomas, adenocarcinomas, and adjacent tissue were subjected to RT-qPCR to determine the expression of PRKCQ-AS1, SATB1-AS1 along with colon cancer-associated transcript 1 (CCAT1) and cMYC. In addition, we used different bioinformatics analyses and webservers (including GEPIA 2, TCGA, and CancerMine) to elucidate the prognosis prediction value, the expression correlation of sense-antisense pair of genes, and the expression profile of these antisense transcripts at the presence or absence of mutations in the driver genes, or the corresponding sense genes. RESULTS: PRKCQ-AS1 showed a wide range of expression levels in colorectal adenoma, advanced adenoma, and adenocarcinoma. Upregulation of PRKCQ-AS1 was related to a significant decrease in survival of colorectal cancer (CRC) patients. The expression levels of PRKCQ-AS1 and PRKCQ were strong and significantly concordant in normal and cancerous colorectal tissues. While SATB1-AS1 showed a wide range of expression in colorectal adenoma, advanced adenoma, and adenocarcinoma as well, its expression was not related to a decrease in survival of CRC patients. The expression levels of SATB1-AS1 and SATB1 (the sense gene) were not strong in normal colorectal tissues. In addition, where SATB1 gene was mutated, the expression of SATB1-AS1 was significantly downregulated. CONCLUSIONS: We found the expression of PRKCQ-AS1 and SATB1-AS1 at a given stage of CRC very variable, and not all biopsy samples showed the increased expression of these antisense transcripts. PRKCQ-AS1 in contrast to SATB1-AS1 showed a significant prognostic value. Since a significantly concordant expression was observed for SATB1-AS1 and SATB1 in only cancerous, and for PRKCQ-AS1 and PRKCQ in both normal and cancerous colorectal tissues, it can be concluded that common mechanisms may regulate the expression of these sense and antisense genes.

3.
Res Vet Sci ; 95(3): 891-3, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23916591

ABSTRACT

Iodothyronine deiodinases I and II (DIO1 and DIO2) remove iodine from T4 to convert it to a more biologically active T3. The relative contribution of different tissue deiodinases to the establishment of a euthyroid state in sheep is not known. The objective of this study was to quantitate the amounts of transcription of DIO1 and DIO2 deiodinases in different ovine tissues. Using RT-qPCR, we found that DIO1 deiodinase is transcribed in skeletal muscle, kidney, and heart, more than thyroid, in diaphragm in quantities very similar to thyroid, and in liver, spleen, lung, and mammary gland lower than thyroid. We also found that the level of DIO2 transcription in all other tissues was lower than that in thyroid. In clinical settings, measurement of DIO1 and DIO2 expression in a given tissue may provide important clues on the intensity of selenium deficiency and its effects on the metabolism of thyroid hormones.


Subject(s)
Iodide Peroxidase/biosynthesis , Animals , Iodide Peroxidase/chemistry , Iodide Peroxidase/genetics , Kidney/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/veterinary , Sheep/metabolism , Tissue Distribution , Iodothyronine Deiodinase Type II
4.
J Trace Elem Med Biol ; 27(3): 213-20, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23481027

ABSTRACT

Selenium is essential for thyroid hormone homeostasis. Selenium is co-translationally incorporated into the protein backbone of 5' deiodinase enzymes, which are responsible for the intra- and extra-thyroidal activation of thyroid hormones. The objective of this study was to evaluate the effects of sodium selenite on the transcript levels of type I (DIO1) and II (DIO2) deiodinases in the primary culture of ovine and bovine fetal thyroid. By culture of fetal thyrocytes in the presence or absence of sodium selenite, and quantification of DIO1 and DIO2 transcripts using real-time reverse transcription polymerase chain reaction (RT-qPCR), we found that sodium selenite is able to increase the abundance of transcripts for DIO1 and DIO2 genes. We also found that cultured thyrocytes in the presence of sodium selenite compared to control cultured thyrocytes release more T3 into the culture medium. This indicates that in the presence of sodium selenite higher levels of DIO1 and DIO2 enzymes are produced, which are able to convert T4 to T3. In conclusion, we have shown that sodium selenite is increasing the abundance of DIO1 and DIO2 transcripts and increasing the production and release of T3 from cultured fetal thyrocytes. This finding emphasizes the role of selenium in transcriptional and expression processes during development and suggests that selenium deficiency during pregnancy in sheep and cattle may lead to the lower levels of DIO1 and DIO2 transcription in fetal thyroid, and thus, lower level of thyroidal T3 release into the fetal serum.


Subject(s)
Iodide Peroxidase/genetics , Sodium Selenite/pharmacology , Thyroid Gland/drug effects , Transcription, Genetic/drug effects , Animals , Cattle , Cells, Cultured , Dose-Response Relationship, Drug , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sheep , Structure-Activity Relationship , Thyroid Gland/cytology , Thyroid Gland/enzymology , Transcription, Genetic/genetics , Iodothyronine Deiodinase Type II
SELECTION OF CITATIONS
SEARCH DETAIL
...