Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 14(1): e202000160, 2021 01.
Article in English | MEDLINE | ID: mdl-32844561

ABSTRACT

Wavefront-shaping (WS) enables imaging through scattering tissues like bone, which is important for neuroscience and bone-regeneration research. WS corrects for the optical aberrations at a given depth and field-of-view (FOV) within the sample; the extent of the validity of which is limited to a region known as the isoplanatic patch (IP). Knowing this parameter helps to estimate the number of corrections needed for WS imaging over a given FOV. In this paper, we first present direct transmissive measurement of murine skull IP using digital optical phase conjugation based focusing. Second, we extend our previously reported phase accumulation ray tracing (PART) method to provide in-situ in-silico estimation of IP, called correlative PART (cPART). Our results show an IP range of 1 to 3 µm for mice within an age range of 8 to 14 days old and 1.00 ± 0.25 µm in a 12-week old adult skull. Consistency between the two measurement approaches indicates that cPART can be used to approximate the IP before a WS experiment, which can be used to calculate the number of corrections required within a given field of view.


Subject(s)
Diagnostic Imaging , Skull , Animals , Mice , Skull/diagnostic imaging
2.
Connect Tissue Res ; 62(1): 4-14, 2021 01.
Article in English | MEDLINE | ID: mdl-33028134

ABSTRACT

Purpose: Imaging-based metrics for analysis of biological tissues are powerful tools that can extract information such as shape, size, periodicity, and many other features to assess the requested qualities of a tissue. Muscular and osseous tissues consist of periodic structures that are directly related to their function, and so analysis of these patterns likely reflects tissue health and regeneration.Methods: A method for assessment of periodic structures is by analyzing them in the spatial frequency domain using the Fourier transform. In this paper, we present two filters which we developed in the spatial frequency domain for the purpose of analyzing musculoskeletal structures. These filters provide information about 1) the angular orientation of the tissues and 2) their periodicity. We explore periodic structural patterns in the mitochondrial network of skeletal muscles that are reflective of muscle metabolism and myogenesis; and patterns of collagen fibers in the bone that are reflective of the organization and health of bone extracellular matrix.Results: We present an analysis of mouse skeletal muscle in healthy and injured muscles. We used a transgenic mouse that ubiquitously expresses fluorescent protein in their mitochondria and performed 2-photon microscopy to image the structures. To acquire the collagen structure of the bone we used non-linear SHG microscopy of mouse flat bone. We analyze and compare juvenile versus adult mice, which have different structural patterns.Conclusions: Our results indicate that these metrics can quantify musculoskeletal tissues during development and regeneration.


Subject(s)
Benchmarking , Animals , Collagen , Extracellular Matrix , Mice , Muscle, Skeletal/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...