Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Oncol ; 13(1): 85, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048266

ABSTRACT

BACKGROUND: Patients undergoing chemoradiation and immune checkpoint inhibitor (ICI) therapy for locally advanced non-small cell lung cancer (NSCLC) experience pulmonary toxicity at higher rates than historical reports. Identifying biomarkers beyond conventional clinical factors and radiation dosimetry is especially relevant in the modern cancer immunotherapy era. We investigated the role of novel functional lung radiomics, relative to functional lung dosimetry and clinical characteristics, for pneumonitis risk stratification in locally advanced NSCLC. METHODS: Patients with locally advanced NSCLC were prospectively enrolled on the FLARE-RT trial (NCT02773238). All received concurrent chemoradiation using functional lung avoidance planning, while approximately half received consolidation durvalumab ICI. Within tumour-subtracted lung regions, 110 radiomics features (size, shape, intensity, texture) were extracted on pre-treatment [99mTc]MAA SPECT/CT perfusion images using fixed-bin-width discretization. The performance of functional lung radiomics for pneumonitis (CTCAE v4 grade 2 or higher) risk stratification was benchmarked against previously reported lung dosimetric parameters and clinical risk factors. Multivariate least absolute shrinkage and selection operator Cox models of time-varying pneumonitis risk were constructed, and prediction performance was evaluated using optimism-adjusted concordance index (c-index) with 95% confidence interval reporting throughout. RESULTS: Thirty-nine patients were included in the study and pneumonitis occurred in 16/39 (41%) patients. Among clinical characteristics and anatomic/functional lung dosimetry variables, only the presence of baseline chronic obstructive pulmonary disease (COPD) was significantly associated with the development of pneumonitis (HR 4.59 [1.69-12.49]) and served as the primary prediction benchmark model (c-index 0.69 [0.59-0.80]). Discrimination of time-varying pneumonitis risk was numerically higher when combining COPD with perfused lung radiomics size (c-index 0.77 [0.65-0.88]) or shape feature classes (c-index 0.79 [0.66-0.91]) but did not reach statistical significance compared to benchmark models (p > 0.26). COPD was associated with perfused lung radiomics size features, including patients with larger lung volumes (AUC 0.75 [0.59-0.91]). Perfused lung radiomic texture features were correlated with lung volume (adj R2 = 0.84-1.00), representing surrogates rather than independent predictors of pneumonitis risk. CONCLUSIONS: In patients undergoing chemoradiation with functional lung avoidance therapy and optional consolidative immune checkpoint inhibitor therapy for locally advanced NSCLC, the strongest predictor of pneumonitis was the presence of baseline chronic obstructive pulmonary disease. Results from this novel functional lung radiomics exploratory study can inform future validation studies to refine pneumonitis risk models following combinations of radiation and immunotherapy. Our results support functional lung radiomics as surrogates of COPD for non-invasive monitoring during and after treatment. Further study of clinical, dosimetric, and radiomic feature combinations for radiation and immune-mediated pneumonitis risk stratification in a larger patient population is warranted.

2.
Alzheimers Dement (Amst) ; 14(1): e12258, 2022.
Article in English | MEDLINE | ID: mdl-35229014

ABSTRACT

INTRODUCTION: This study aims to determine whether newly introduced biomarkers Visinin-like protein-1 (VILIP-1), chitinase-3-like protein 1 (YKL-40), synaptosomal-associated protein 25 (SNAP-25), and neurogranin (NG) in cerebrospinal fluid are useful in evaluating the asymptomatic and early symptomatic stages of Alzheimer's disease (AD). It further aims to shed new insight into the differences between stable subjects and those who progress to AD by associating cerebrospinal fluid (CSF) biomarkers and specific magnetic resonance imaging (MRI) regions with disease progression, more deeply exploring how such biomarkers relate to AD pathology. METHODS: We examined baseline and longitudinal changes over a 7-year span and the longitudinal interactions between CSF and MRI biomarkers for subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We stratified all CSF (140) and MRI (525) cohort participants into five diagnostic groups (including converters) further dichotomized by CSF amyloid beta (Aß) status. Linear mixed models were used to compare within-person rates of change across diagnostic groups and to evaluate the association of CSF biomarkers as predictors of magnetic resonance imaging (MRI) biomarkers. CSF biomarkers and disease-prone MRI regions are assessed for CSF proteins levels and brain structural changes. RESULTS: VILIP-1 and SNAP-25 displayed within-person increments in early symptomatic, amyloid-positive groups. CSF amyloid-positive (Aß+) subjects showed elevated baseline levels of total tau (tTau), phospho-tau181 (pTau), VILIP-1, and NG. YKL-40, SNAP-25, and NG are positively intercorrelated. Aß+ subjects showed negative MRI biomarker changes. YKL-40, tTau, pTau, and VILIP-1 are longitudinally associated with MRI biomarkers atrophy. DISCUSSION: Converters (CNc, MCIc) highlight the evolution of biomarkers during the disease progression. Results show that underlying amyloid pathology is associated with accelerated cognitive impairment. CSF levels of Aß42, pTau, tTau, VILIP-1, and SNAP-25 show utility to discriminate between mild cognitive impairment (MCI) converter and control subjects (CN). Higher levels of YKL-40 in the Aß+ group were longitudinally associated with declines in temporal pole and entorhinal thickness. Increased levels of tTau, pTau, and VILIP-1 in the Aß+ groups were longitudinally associated with declines in hippocampal volume. These CSF biomarkers should be used in assessing the characterization of the AD progression.

3.
Cancers (Basel) ; 14(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35267535

ABSTRACT

Medical imaging provides quantitative and spatial information to evaluate treatment response in the management of patients with non-small cell lung cancer (NSCLC). High throughput extraction of radiomic features on these images can potentially phenotype tumors non-invasively and support risk stratification based on survival outcome prediction. The prognostic value of radiomics from different imaging modalities and time points prior to and during chemoradiation therapy of NSCLC, relative to conventional imaging biomarker or delta radiomics models, remains uncharacterized. We investigated the utility of multitask learning of multi-time point radiomic features, as opposed to single-task learning, for improving survival outcome prediction relative to conventional clinical imaging feature model benchmarks. Survival outcomes were prospectively collected for 45 patients with unresectable NSCLC enrolled on the FLARE-RT phase II trial of risk-adaptive chemoradiation and optional consolidation PD-L1 checkpoint blockade (NCT02773238). FDG-PET, CT, and perfusion SPECT imaging pretreatment and week 3 mid-treatment was performed and 110 IBSI-compliant pyradiomics shape-/intensity-/texture-based features from the metabolic tumor volume were extracted. Outcome modeling consisted of a fused Laplacian sparse group LASSO with component-wise gradient boosting survival regression in a multitask learning framework. Testing performance under stratified 10-fold cross-validation was evaluated for multitask learning radiomics of different imaging modalities and time points. Multitask learning models were benchmarked against conventional clinical imaging and delta radiomics models and evaluated with the concordance index (c-index) and index of prediction accuracy (IPA). FDG-PET radiomics had higher prognostic value for overall survival in test folds (c-index 0.71 [0.67, 0.75]) than CT radiomics (c-index 0.64 [0.60, 0.71]) or perfusion SPECT radiomics (c-index 0.60 [0.57, 0.63]). Multitask learning of pre-/mid-treatment FDG-PET radiomics (c-index 0.71 [0.67, 0.75]) outperformed benchmark clinical imaging (c-index 0.65 [0.59, 0.71]) and FDG-PET delta radiomics (c-index 0.52 [0.48, 0.58]) models. Similarly, the IPA for multitask learning FDG-PET radiomics (30%) was higher than clinical imaging (26%) and delta radiomics (15%) models. Radiomics models performed consistently under different voxel resampling conditions. Multitask learning radiomics for outcome modeling provides a clinical decision support platform that leverages longitudinal imaging information. This framework can reveal the relative importance of different imaging modalities and time points when designing risk-adaptive cancer treatment strategies.

4.
J Neurosci Methods ; 344: 108856, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32663548

ABSTRACT

BACKGROUND: Using multiple modalities of biomarkers, several machine leaning-based approaches have been proposed to characterize patterns of structural, functional and metabolic differences discernible from multimodal neuroimaging data for Alzheimer's disease (AD). Current investigations report several studies using binary classification often augmented with local feature selection methods, while fewer other studies address the challenging problem of multiclass classification. NEW METHOD: To assess the merits of each of these research directions, this study introduces a supervised Gaussian discriminative component analysis (GDCA) algorithm, which can effectively delineate subtle changes of early mild cognitive impairment (EMCI) group in relation to the cognitively normal control (CN) group. Using 251 CN, 297 EMCI, 196 late MCI (LMCI), and 162 AD subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and considering both structural and functional (metabolic) information from magnetic resonance imaging (MRI) and positron emission tomography (PET) modalities as input, the proposed method conducts a dimensionality reduction algorithm taking into consideration the interclass information to define an optimal eigenspace that maximizes the discriminability of selected eigenvectors. RESULTS: The proposed algorithm achieves an accuracy of 79.25 % for delineating EMCI from CN using 38.97 % of Gaussian discriminative components (i.e., dimensionality reduction). Moreover, for detecting the different stages of AD, a multiclass classification experiment attained an overall accuracy of 67.69 %, and more notably, discriminates MCI and AD groups from the CN group with an accuracy of 75.28 % using 48.90 % of the Gaussian discriminative components. COMPARISON WITH EXISTING METHOD(S): The classification results of the proposed GDCA method outperform the more recently published state-of-the-art methods in AD-related multiclass classification tasks, and seems to be the most stable and reliable in terms of relating the most relevant features to the optimal classification performance. CONCLUSION: The proposed GDCA model with its high prospects for multiclass classification has a high potential for deployment as a computer aided clinical diagnosis system for AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Algorithms , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging
5.
J Neurosci Methods ; 333: 108544, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31838182

ABSTRACT

BACKGROUND: Diagnosis of early mild cognitive impairment (EMCI) as a prodromal stage of Alzheimer's disease (AD) with its delineation from the cognitively normal (CN) group remains a challenging but essential step for the planning of early treatment. Although several studies have focused on the MCI diagnosis, this study introduces the early stage of MCI to assess more thoroughly the earliest signs of disease manifestation and progression. NEW METHOD: We used random forest feature selection model with a Gaussian-based algorithm to perform method evaluation. This integrated method serves to define multivariate normal distributions in order to classify different stages of AD, with the focus placed on detecting EMCI subjects in the most challenging classification of CN vs. EMCI. RESULTS: Using 896 participants classified into the four categories of CN, EMCI, late mild cognitive impairment (LMCI) and AD, the results show that the EMCI group can be delineated from the CN group with a relatively high accuracy of 78.8% and sensitivity of 81.3%. COMPARISON WITH EXISTING METHOD(S): The feature selection model and classifier are compared with some other prominent algorithms. Although higher accuracy has been achieved using the Gaussian process (GP) model (78.8%) over the SVM classifier (75.6%) for CN vs. EMCI classification, with 0.05 being the cutoff for significance, and based on student's t-test, it was determined that the differences for accuracy, sensitivity, specificity between the GP method and support vector machine (SVM) are not statistically significant. CONCLUSION: Addressing the challenging classification of CN vs. EMCI provides useful information to help clinicians and researchers determine essential measures that can help in the early detection of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging , Normal Distribution
6.
J Neurosci Methods ; 317: 121-140, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30593787

ABSTRACT

BACKGROUND: Functional magnetic resonance imaging (fMRI) is an MRI-based neuroimaging technique that measures brain activity on the basis of blood oxygenation level. This study reviews the main fMRI methods reported in the literature and their related applications in clinical and preclinical studies, focusing on relating functional brain networks in the prodromal stages of Alzheimer's disease (AD), with a focus on the transition phases from cognitively normal (CN) to mild cognitive impairment (MCI) and from MCI to AD. NEW METHOD: The purpose of this study is to present and compare different approaches of supervised and unsupervised fMRI analyses and to highlight the different applications of fMRI in the diagnosis of MCI and AD. RESULTS: Survey article asserts that brain network disruptions of a given dysfunction or in relation to disease prone areas of the brain in neurodegenerative dementias could be extremely useful in ascertaining the extent of cognitive deficits at the different stages of the disease. Identifying the earliest changes in these activity patterns is essential for the early planning of treatment and therapeutic protocols. COMPARISON WITH EXISTING METHODS: Analysis methods such as independent component analysis (ICA) and graph theory-based approaches are strong analytical techniques most suitable for functional connectivity investigations. However, graph theory-based approaches have received more attention due to the higher performance they achieve in both functional and effective connectivity studies. CONCLUSION: This article shows that the disruption of brain connectivity patterns of MCI and AD could be associated with cognitive decline, an interesting finding that could augment the prospects for early diagnosis. More importantly, results reveal that changes in functional connectivity as obtained through fMRI precede detection of cortical thinning in structural MRI and amyloid deposition in positron emission tomography (PET). However, a major challenge in using fMRI as a single imaging modality, like all other imaging modalities used in isolation, is in relating a particular disruption in functional connectivity in relation to a specific disease. This is a challenge that requires more thorough investigation, and one that could perhaps be overcome through multimodal neuroimaging by consolidating the strengths of these individual imaging modalities.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain Mapping/methods , Brain/diagnostic imaging , Magnetic Resonance Imaging , Alzheimer Disease/physiopathology , Brain/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Data Interpretation, Statistical , Humans , Image Interpretation, Computer-Assisted/methods , Machine Learning , Neural Pathways/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...