Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 24(2): 460-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19956200

ABSTRACT

Acute myeloid leukemia (AML) involves a block in terminal differentiation of the myeloid lineage and uncontrolled proliferation of a progenitor state. Using phorbol myristate acetate (PMA), it is possible to overcome this block in THP-1 cells (an M5-AML containing the MLL-MLLT3 fusion), resulting in differentiation to an adherent monocytic phenotype. As part of FANTOM4, we used microarrays to identify 23 microRNAs that are regulated by PMA. We identify four PMA-induced microRNAs (mir-155, mir-222, mir-424 and mir-503) that when overexpressed cause cell-cycle arrest and partial differentiation and when used in combination induce additional changes not seen by any individual microRNA. We further characterize these pro-differentiative microRNAs and show that mir-155 and mir-222 induce G2 arrest and apoptosis, respectively. We find mir-424 and mir-503 are derived from a polycistronic precursor mir-424-503 that is under repression by the MLL-MLLT3 leukemogenic fusion. Both of these microRNAs directly target cell-cycle regulators and induce G1 cell-cycle arrest when overexpressed in THP-1. We also find that the pro-differentiative mir-424 and mir-503 downregulate the anti-differentiative mir-9 by targeting a site in its primary transcript. Our study highlights the combinatorial effects of multiple microRNAs within cellular systems.


Subject(s)
Cell Differentiation , Gene Expression Regulation , MicroRNAs/physiology , Monocytes/cytology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Humans , Tetradecanoylphorbol Acetate/pharmacology
2.
Science ; 309(5740): 1559-63, 2005 Sep 02.
Article in English | MEDLINE | ID: mdl-16141072

ABSTRACT

This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.


Subject(s)
Genome , Mice/genetics , Terminator Regions, Genetic , Transcription Initiation Site , Transcription, Genetic , 3' Untranslated Regions , Animals , Base Sequence , Conserved Sequence , DNA, Complementary/chemistry , Genome, Human , Genomics , Humans , Promoter Regions, Genetic , Proteins/genetics , RNA/chemistry , RNA/classification , RNA Splicing , RNA, Untranslated/chemistry , Regulatory Sequences, Ribonucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...