Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Data Brief ; 54: 110384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646195

ABSTRACT

Process-based forest models combine biological, physical, and chemical process understanding to simulate forest dynamics as an emergent property of the system. As such, they are valuable tools to investigate the effects of climate change on forest ecosystems. Specifically, they allow testing of hypotheses regarding long-term ecosystem dynamics and provide means to assess the impacts of climate scenarios on future forest development. As a consequence, numerous local-scale simulation studies have been conducted over the past decades to assess the impacts of climate change on forests. These studies apply the best available models tailored to local conditions, parameterized and evaluated by local experts. However, this treasure trove of knowledge on climate change responses remains underexplored to date, as a consistent and harmonized dataset of local model simulations is missing. Here, our objectives were (i) to compile existing local simulations on forest development under climate change in Europe in a common database, (ii) to harmonize them to a common suite of output variables, and (iii) to provide a standardized vector of auxiliary environmental variables for each simulated location to aid subsequent investigations. Our dataset of European stand- and landscape-level forest simulations contains over 1.1 million simulation runs representing 135 million simulation years for more than 13,000 unique locations spread across Europe. The data were harmonized to consistently describe forest development in terms of stand structure (dominant height), composition (dominant species, admixed species), and functioning (leaf area index). Auxiliary variables provided include consistent daily climate information (temperature, precipitation, radiation, vapor pressure deficit) as well as information on local site conditions (soil depth, soil physical properties, soil water holding capacity, plant-available nitrogen). The present dataset facilitates analyses across models and locations, with the aim to better harness the valuable information contained in local simulations for large-scale policy support, and for fostering a deeper understanding of the effects of climate change on forest ecosystems in Europe.

2.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453933

ABSTRACT

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Subject(s)
Biodiversity , Ecosystem , Plants , Biomass , Forests , Grassland
3.
Sci Total Environ ; 888: 164123, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37182772

ABSTRACT

Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmental factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addition, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explanatory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empirical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process-based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a substantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.


Subject(s)
Ecosystem , Fagus , Climate Change , Forests , Trees
4.
Glob Chang Biol ; 28(17): 5254-5268, 2022 09.
Article in English | MEDLINE | ID: mdl-35703577

ABSTRACT

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.


Subject(s)
Forests , Trees , Biomass , Carbon/metabolism , Carbon Cycle , Ecosystem , Trees/physiology
5.
Front Plant Sci ; 13: 853968, 2022.
Article in English | MEDLINE | ID: mdl-35720530

ABSTRACT

Silvicultural practices greatly improve the economic value of wood products from forests. Stem dimensions, wood density, and stem form are closely linked to end-product performance. This research aimed to examine the effects of stand density and stem height on variables that reflect ring growth and wood properties of Sassafras tzumu stands during the self-thinning phase. Between the ages of 10 and 40 years, the number of stems per hectare has declined from 1,068 to 964 due to density-dependent mortality. As the relative stand density decreased, there were significant reductions in the average tree ring width (5.07-3.51 mm) and increases in latewood proportions (49.88-53.49%) and the density of the annual growth ring (165.60-708.58 kg/m3). Therefore, ring density, earlywood density, and latewood density increased with decreasing relative stand density after self-thinning occurred. Ring width, earlywood width, and latewood width significantly increased from the base to the apex of the stem. Stand density and stem height had additive effects on S. tzumu wood properties during the self-thinning phase. A shift in the growth allocation along the longitudinal stem in response to self-thinning resulted in decreasing radial growth, increasing wood density, and improved stem form. In summary, we found a significant influence of stand density on tree ring growth, wood quality, and stem form of S. tzumu trees during the self-thinning phase.

6.
Science ; 376(6595): 865-868, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35587983

ABSTRACT

Multispecies tree planting has long been applied in forestry and landscape restoration in the hope of providing better timber production and ecosystem services; however, a systematic assessment of its effectiveness is lacking. We compiled a global dataset of matched single-species and multispecies plantations to evaluate the impact of multispecies planting on stand growth. Average tree height, diameter at breast height, and aboveground biomass were 5.4, 6.8, and 25.5% higher, respectively, in multispecies stands compared with single-species stands. These positive effects were mainly the result of interspecific complementarity and were modulated by differences in leaf morphology and leaf life span, stand age, planting density, and temperature. Our results have implications for designing afforestation and reforestation strategies and bridging experimental studies of biodiversity-ecosystem functioning relationships with real-world practices.


Subject(s)
Datasets as Topic , Environmental Restoration and Remediation , Forestry , Forests , Trees , Biodiversity
7.
Sci Total Environ ; 828: 154517, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278541

ABSTRACT

Drought events lead to depressions in gross primary productivity (GPP) of forest ecosystems. Photosynthetic and hydraulic traits are important factors governing GPP variation. However, how these functional traits affect GPP responses to drought has not been well understood. We quantified the capacity of GPP to withstand changes during droughts (GPP_resistance) and its post-drought responses (GPP_resilience) using eddy covariance data from the FLUXNET2015 dataset, and investigated how functional traits of dominant tree species that comprised >80% of the biomass (or composition) influenced GPP_resistance or GPP_resilience. Light-saturated photosynthetic rate of dominant tree species was negatively related to GPP_resistance, and was positively correlated with GPP_resilience. Forests dominated by species with higher hydraulic safety margins (HSM), smaller vessel diameter (Vdia) and lower sensitivity of canopy stomatal conductance per unit land area (Gs) to droughts had a higher GPP_resistance, while those dominated by species with lower HSM, larger Vdia and higher sensitivity of Gs to droughts exhibited a higher GPP_resilience. Differences in functional traits of forests located in diverse climate regions led to distinct GPP sensitivities to droughts. Forests located in humid regions had a higher GPP_resilience while those in arid regions exhibited a higher GPP_resistance. Forest GPP_resistance was negatively related to drought intensity, and GPP_resilience was negatively related to drought duration. Our findings highlight the significant role of functional traits in governing forest resistance and resilience to droughts. Overall, forests dominated by species with higher hydraulic safety were more resistant to droughts, while forests containing species with higher photosynthetic and hydraulic efficiency recovered better from drought stress.


Subject(s)
Droughts , Ecosystem , Climate Change , Forests , Photosynthesis , Trees/physiology
8.
Tree Physiol ; 42(10): 1916-1927, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35157081

ABSTRACT

Relationships between tree size and water use indicate how soil water is partitioned between differently sized individuals, and hence competition for water. These relationships are rarely examined, let alone whether there is consistency in shape across populations. Competition for water among plants is often assumed to be size-symmetric, i.e., exponents (b1) of power functions (water use ∝ biomassb1) equal to 1, with all sizes using the same amount of water proportionally to their size. We tested the hypothesis that b1 actually varies greatly, and based on allometric theory, that b1 is only centered around 1 when size is quantified as basal area or sapwood area (not diameter). We also examined whether b1 varies spatially and temporally in relation to stand structure (height and density) and climate. Tree water use ∝ sizeb1 power functions were fitted for 80 species and 103 sites using the global SAPFLUXNET database. The b1 were centered around 1 when tree size was given as basal area or sapwood area, but not as diameter. The 95% confidence intervals of b1 included the theoretical predictions for the scaling of plant vascular networks. b1 changed through time within a given stand for the species with the longest time series, such that larger trees gained an advantage during warmer and wetter conditions. Spatial comparisons across the entire dataset showed that b1 correlated only weakly (R2 < 12%) with stand structure or climate, suggesting that inter-specific variability in b1 and hence the symmetry of competition for water may be largely related to inter-specific differences in tree architecture or physiology rather than to climate or stand structure. In conclusion, size-symmetric competition for water (b1 ≈ 1) may only be assumed when size is quantified as basal area or sapwood area, and when describing a general pattern across forest types and species. There is substantial deviation in b1 between individual stands and species.


Subject(s)
Trees , Water , Climate , Forests , Plants , Soil , Trees/physiology
9.
Tree Physiol ; 42(2): 253-272, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34409447

ABSTRACT

Variability in functional traits (FT) is increasingly used to understand the mechanisms behind tree species interactions and ecosystem functioning. In order to explore how FT differ due to interactions between tree species and its influence on stand productivity and other ecological processes, we examined the effects of tree species composition on the intra-specific variability of four widely measured FT: specific leaf area, leaf nitrogen content, leaf angle and stomatal conductance response to vapor pressure deficit. This study focused on three major central European tree species: European beech (Fagus sylvatica L.), Sessile oak (Quercus petraea Liebl.) and Norway spruce (Picea abies [L.] H. Karst.). Each species was examined in monoculture and two-species mixtures in the 13-year-old tree biodiversity experiment BIOTREE-Kaltenborn. Trait distributions and linear mixed models were used to analyze the effect of species mixing, tree size and stand variables on the intra-specific FT variability. A significant effect of branch height on most traits and species indicated a vertical gradient of foliar trait frequently related to light availability. Beech and oak showed a high overall trait variability and sensitivity to species mixing and stand basal area, while the trait variability of spruce was limited. Greater shifts in trait distributions due to mixing were found in specific leaf area for oak and leaf nitrogen content for beech. Thus intra-specific variability of key leaf traits was already influenced at this young development stage by inter-specific interactions. Finally, we used the 3-PG (Physiological Processes Predicting Growth) process-based forest growth model to show that the measured intra-specific variability on single FT values could influence stand productivity, light absorption and transpiration, although the net effect depends on the considered trait and the species composition of the mixture. The results of this study will aid better understanding of the effects of inter-specific competition on intra-specific FT variability, which has implications for the parameterization of process-based forest growth models and our understanding of ecosystem functioning.


Subject(s)
Abies , Fagus , Ecology , Ecosystem , Fagus/physiology , Forests , Trees/physiology
10.
Glob Chang Biol ; 27(18): 4403-4419, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34166562

ABSTRACT

Extreme droughts are expected to increase in frequency and severity in many regions of the world, threatening multiple ecosystem services provided by forests. Effective strategies to adapt forests to such droughts require comprehensive information on the effects and importance of the factors influencing forest resistance and resilience. We used a unique combination of inventory and dendrochronological data from a long-term (>30 years) silvicultural experiment in mixed silver fir and Norway spruce mountain forests along a temperature and precipitation gradient in southwestern Germany. We aimed at examining the mechanisms and forest stand characteristics underpinning the resistance and resilience to past mild and severe droughts. We found that (i) fir benefited from mild droughts and showed higher resistance (i.e., lower growth loss during drought) and resilience (i.e., faster return to pre-drought growth levels) than spruce to all droughts; (ii) species identity determined mild drought responses while species interactions and management-related factors strongly influenced the responses to severe droughts; (iii) intraspecific and interspecific interactions had contrasting effects on the two species, with spruce being less resistant to severe droughts when exposed to interaction with fir and beech; (iv) higher values of residual stand basal area following thinning were associated with lower resistance and resilience to severe droughts; and (v) larger trees were resilient to mild drought events but highly vulnerable to severe droughts. Our study provides an analytical approach for examining the effects of different factors on individual tree- and stand-level drought response. The forests investigated here were to a certain extent resilient to mild droughts, and even benefited from such conditions, but were strongly affected by severe droughts. Lastly, negative effects of severe droughts can be reduced through modifying species composition, tree size distribution and stand density in mixed silver fir-Norway spruce forests.


Subject(s)
Droughts , Ecosystem , Climate Change , Europe , Forests , Norway
11.
Sci Total Environ ; 784: 147222, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34088042

ABSTRACT

Recent studies have identified strong relationships between delayed recovery of tree growth after drought and tree mortality caused by subsequent droughts. These observations raise concerns about forest ecosystem services and post-drought growth recovery given the projected increase in drought frequency and extremes. For quantifying the impact of extreme droughts on tree radial growth, we used a network of tree-ring width data of 1689 trees from 100 sites representing most of the distribution of two drought tolerant, deciduous oak species (Quercus petraea and Quercus robur). We first examined which climatic factors and seasons control growth of the two species and if there is any latitudinal, longitudinal or elevational trend. We then quantified the relative departure from pre-drought growth during droughts, and how fast trees were able to recover the pre-drought growth level. Our results showed that growth was more related to precipitation and climatic water balance (precipitation minus potential evapotranspiration) than to temperature. However, we did not detect any clear latitudinal, longitudinal or elevational trends except a decreasing influence of summer water balance on growth of Q. petraea with latitude. Neither species was able to maintain the pre-drought growth level during droughts. However, both species showed rapid recovery or even growth compensation after summer droughts but displayed slow recovery in response to spring droughts where none of the two species was able to fully recover the pre-drought growth-level over the three post-drought years. Collectively, our results indicate that oaks which are considered resilient to extreme droughts have also shown vulnerability when droughts occurred in spring especially at sites where long-term growth is not significantly correlated with climatic factors. This improved understanding of the role of drought seasonality and climate sensitivity of sites is key to better predict trajectories of post-drought growth recovery in response to the drier climate projected for Europe.


Subject(s)
Quercus , Climate Change , Droughts , Ecosystem , Europe , Forests , Trees
12.
Glob Chang Biol ; 26(4): 2463-2476, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31968145

ABSTRACT

The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha-1  year-1  km-1 for P. abies and 0.93 ± 0.010 Mg C ha-1  year-1  km-1 for F. sylvatica). During warm-dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm-dry extremes. Importantly, cold-dry extremes had negative impacts on regional forest NPP comparable to warm-dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.

14.
Oecologia ; 191(2): 421-432, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31463782

ABSTRACT

Light-related interactions can increase productivity in tree-species mixtures compared with monocultures due to higher stand-level absorption of photosynthetically active radiation (APAR) or light-use efficiency (LUE). However, the effects of different light-related interactions, and their relative importance, have rarely been quantified. Here, measurements of vertical leaf-area distributions, tree sizes, and stand density were combined with a tree-level light model (Maestra) to examine how crown architecture and vertical or horizontal canopy structure influence the APAR of 16 monocultures and eight different two-species mixtures with 16 different species in a Chinese subtropical tree diversity experiment. A higher proportion of crown leaf area occurred in the upper crowns of species with higher specific leaf areas. Tree-level APAR depended largely on tree leaf area and also, but to a lesser extent, on relative height (i.e., tree dominance) and leaf-area index (LAI). Stand-level APAR depended on LAI and canopy volume, but not on the vertical stratification or canopy leaf-area density. The mixing effects, in terms of relative differences between mixtures and monocultures, on stand-level APAR were correlated with the mixing effects on basal area growth, indicating that light-related interactions may have been responsible for part of the mixing effects on basal area growth. While species identity influences the vertical distributions of leaf area within tree crowns, this can have a relatively small effect on tree and stand APAR compared with the size and vertical positioning of the crowns, or the LAI and canopy volume.


Subject(s)
Plant Leaves , Trees
15.
Nat Ecol Evol ; 1(11): 1639-1642, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28970481

ABSTRACT

The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.


Subject(s)
Biodiversity , Forests , Grassland , Ecosystem
16.
Glob Chang Biol ; 23(1): 177-190, 2017 01.
Article in English | MEDLINE | ID: mdl-27381364

ABSTRACT

Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able - for the first time - to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed - specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large-scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.


Subject(s)
Carbon Cycle , Forests , Remote Sensing Technology , Biomass , Carbon , Trees
17.
Glob Chang Biol ; 22(6): 2106-24, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26683241

ABSTRACT

Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures).


Subject(s)
Biomass , Ecosystem , Models, Biological , Trees/growth & development , Australia , Carbon , Carbon Sequestration , Eucalyptus/growth & development , Forests , Plant Stems/growth & development , Wood/growth & development
18.
PLoS One ; 10(3): e0120335, 2015.
Article in English | MEDLINE | ID: mdl-25803035

ABSTRACT

The role of competition in tree communities is increasingly well understood, while little is known about the patterns and mechanisms of the interplay between above- and belowground competition in tree communities. This knowledge, however, is crucial for a better understanding of community dynamics and developing adaptive near-natural management strategies. We assessed neighbourhood interactions in an unmanaged old-growth European beech (Fagus sylvatica) forest by quantifying variation in the intensity of above- (shading) and belowground competition (crowding) among dominant and co-dominant canopy beech trees during tree maturation. Shading had on average a much larger impact on radial growth than crowding and the sensitivity to changes in competitive conditions was lowest for crowding effects. We found that each mode of competition reduced the effect of the other. Increasing crowding reduced the negative effect of shading, and at high levels of shading, crowding actually had a facilitative effect and increased growth. Our study demonstrates that complementarity in above- and belowground processes enable F. sylvatica to alter resource acquisition strategies, thus optimising tree radial growth. As a result, competition seemed to become less important in stands with a high growing stock and tree communities with a long continuity of anthropogenic undisturbed population dynamics. We suggest that growth rates do not exclusively depend on the density of potential competitors at the intraspecific level, but on the conspecific aggregation of large-diameter trees and their functional role for regulating biotic filtering processes. This finding highlights the potential importance of the rarely examined relationship between the spatial aggregation pattern of large-diameter trees and the outcome of neighbourhood interactions, which may be central to community dynamics and the related forest ecosystem services.


Subject(s)
Fagus/growth & development , Forests , Trees/growth & development , Fagus/anatomy & histology , Models, Biological , Trees/anatomy & histology
19.
Tree Physiol ; 35(3): 289-304, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25732385

ABSTRACT

Mixtures can be more productive than monocultures and may therefore use more water, which may make them more susceptible to droughts. The species interactions that influence growth, transpiration and water-use efficiency (WUE, tree growth per unit transpiration) within a given mixture vary with intra- and inter-annual climatic variability, stand density and tree size, but these effects remain poorly quantified. These relationships were examined in mixtures and monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman. Growth and transpiration were measured between ages 14 and 15 years. All E. globulus trees in mixture that were growing faster than similar sized trees in monocultures had higher WUE, while trees with similar growth rates had similar WUE. By the age of 14 years A. mearnsii trees were beginning to senesce and there were no longer any relationships between tree size and growth or WUE. The relationship between transpiration and tree size did not differ between treatments for either species, so stand-level increases in transpiration simply reflected the larger mean tree size in mixtures. Increasing neighbourhood basal area increased the complementarity effect on E. globulus growth and transpiration. The complementarity effect also varied throughout the year, but this was not related to the climatic seasonality. This study shows that stand-level responses can be the net effect of a much wider range of individual tree-level responses, but at both levels, if growth has not increased for a given species, it appears unlikely that there will be differences in transpiration or WUE for that species. Growth data may provide a useful initial indication of whether mixtures have higher transpiration or WUE, and which species and tree sizes contribute to this effect.


Subject(s)
Biodiversity , Forests , Plant Transpiration/physiology , Seasons , Trees/physiology , Acacia/physiology , Eucalyptus/physiology , Plants , Water
20.
Oecologia ; 166(1): 265-72, 2011 May.
Article in English | MEDLINE | ID: mdl-21344256

ABSTRACT

The balance between facilitation and competition is likely to change with age due to the dynamic nature of nutrient, water and carbon cycles, and light availability during stand development. These processes have received attention in harsh, arid, semiarid and alpine ecosystems but are rarely examined in more productive communities, in mixed-species forest ecosystems or in long-term experiments spanning more than a decade. The aim of this study was to examine how inter- and intraspecific interactions between Eucalyptus globulus Labill. mixed with Acacia mearnsii de Wildeman trees changed with age and productivity in a field experiment in temperate south-eastern Australia. Spatially explicit neighbourhood indices were calculated to quantify tree interactions and used to develop growth models to examine how the tree interactions changed with time and stand productivity. Interspecific influences were usually less negative than intraspecific influences, and their difference increased with time for E. globulus and decreased with time for A. mearnsii. As a result, the growth advantages of being in a mixture increased with time for E. globulus and decreased with time for A. mearnsii. The growth advantage of being in a mixture also decreased for E. globulus with increasing stand productivity, showing that spatial as well as temporal dynamics in resource availability influenced the magnitude and direction of plant interactions.


Subject(s)
Acacia/growth & development , Ecosystem , Eucalyptus/growth & development , Models, Biological , Time Factors , Victoria
SELECTION OF CITATIONS
SEARCH DETAIL
...