Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 79(9): 5455-65, 2005 May.
Article in English | MEDLINE | ID: mdl-15827160

ABSTRACT

Historically, the adenoviral E3 region was found to be nonessential for viral replication in vitro. In addition, adenoviruses whose genome was more than approximately 105% the size of the native genome were inefficiently packaged. These profound observations were used experimentally to insert transgenes into the adenoviral backbone. More recently, however, the reintroduction of the E3 region into oncolytic adenoviruses has been found to positively influence antitumor efficacy in preclinical models and clinical trials. In the studies reported here, the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA sequence has been substituted for the E3-gp19 gene in oncolytic adenoviruses that otherwise retained the E3 region. Five viruses that differed slightly in the method of transgene insertion were generated and compared to Ar6pAE2fGmF (E2F/GM/DeltaE3), a previously described E3-deleted oncolytic adenovirus encoding GM-CSF. In all of the viruses, the human E2F-1 promoter regulated E1A expression and GM-CSF expression was under the control of the adenoviral E3 promoter and the packaging signal was relocated immediately upstream from the right terminal repeat. The E3-gp19-deleted viruses had similar cytolytic properties, as measured in vitro by cytotoxicity assays, but differed markedly in their capacity to express and secrete GM-CSF. Ar15pAE2fGmF (E2F/GM/E3b), the virus that produced the highest levels of GM-CSF and retained the native GM-CSF leader sequence, was selected for further analysis. The E2F/GM/E3b and E2F/GM/DeltaE3 viruses exhibited similar cytotoxic activity and GM-CSF production in several tumor cell lines in vitro. However, when compared in vivo in nude mouse xenograft tumor models, E2F/GM/E3b spread through tumors to a greater extent, resulted in higher peak GM-CSF and total exposure levels in both tumor and serum, and was more efficacious than the E3-deleted virus. Using the matched WI-38 (parental) and WI-38-VA13 (simian virus 40 large T antigen transformed) cell pair, GM-CSF was shown to be selectively produced in cells expressing high levels of E2F, indicating that the tumor-selective E2F promoter controlled E1A and GM-CSF expression.


Subject(s)
Adenoviridae/genetics , Adenovirus E3 Proteins/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Neoplasms, Experimental/therapy , Adenoviridae/metabolism , Adenovirus E1A Proteins/genetics , Adenovirus E2 Proteins/genetics , Adenovirus E3 Proteins/analysis , Animals , Capsid Proteins/analysis , Female , Genetic Therapy , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Mice , Mice, Nude , Promoter Regions, Genetic , Transgenes , Virus Replication , Xenograft Model Antitumor Assays
2.
Cancer Gene Ther ; 11(8): 555-69, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15232601

ABSTRACT

A potentially promising treatment of metastatic cancer is the systemic delivery of oncolytic adenoviruses. This requires engineering viruses which selectively replicate in tumors. We have constructed such an oncolytic adenovirus, OAS403, in which two early region genes are under the control of tumor-selective promoters that play a role in two key pathways involved in tumorigenesis. The early region E1A is controlled by the promoter for the E2F-1 gene, a transcription factor that primarily upregulates genes for cell growth. The E4 region is under control of the promoter for human telomerase reverse transcriptase, a gene upregulated in most cancer cells. OAS403 was evaluated in vitro on a panel of human cells and found to elicit tumor-selective cell killing. Also, OAS403 was less toxic in human hepatocyte cultures, as well as in vivo when compared to an oncolytic virus that lacked selective E4 control. A single intravenous injection of 3 x 10(12) vp/kg in a Hep3B xenograft mouse tumor model led to significant antitumor efficacy. Additionally, systemic administration in a pre-established LNCaP prostate tumor model resulted in over 80% complete tumor regressions at a tolerable dose. Vector genome copy number was measured in tumors and livers at various times following tail vein injection and showed a selective time-dependent increase in tumors but not livers over 29 days. Furthermore, efficacy was significantly improved when OAS403 treatment was combined with doxorubicin. This virus holds promise for the treatment of a broad range of human cancers including metastatic disease.


Subject(s)
Adenoviridae/genetics , Neoplasms/therapy , Adenoviridae/metabolism , Animals , DNA-Binding Proteins , Doxorubicin/therapeutic use , Genetic Vectors/administration & dosage , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Injections , Mice , Mice, SCID , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/metabolism , Promoter Regions, Genetic , Telomerase/genetics , Telomerase/metabolism , Virus Replication/genetics , Xenograft Model Antitumor Assays
3.
Mol Ther ; 7(6): 755-64, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12788649

ABSTRACT

Oncolytic adenoviruses are being tested as biological cancer therapeutics. Ar6pAE2fF (E2F vector) contains the E2F-1 promoter to regulate the expression of the E1a gene in cells with a disregulated retinoblastoma pathway. Ar6pAE2fmGmF (E2F-GM vector) includes the murine granulocyte-macrophage colony-stimulating factor (GM-CSF) transgene to enhance anti-tumor activity. Both vectors selectively killed human tumor cells in vitro. The E2F-GM vector expressed biologically active murine GM-CSF in vitro and GM-CSF was detected for several days in serum and tumor extracts following injections of established human xenograft tumors. In vivo, both vectors showed significant dose-dependent anti-tumor responses. The E2F-GM vector elicited greater efficacy compared to the E2F vector, demonstrating that GM-CSF enhanced the anti-tumor activity, even in immunodeficient nude mice. Histological analysis showed that both vectors induced necrosis and mononuclear cell infiltration, but only the E2F-GM vector resulted in eosinophil infiltration. Vector replication in vivo was demonstrated. The data showed that intratumoral injection of a GM-CSF-armed oncolytic vector induced potent anti-tumor responses in xenograft tumor models, likely as the result of both oncolytic vector activity and the induction of GM-CSF-mediated inflammation and innate immunity.


Subject(s)
Adenoviridae/physiology , Carcinoma, Hepatocellular/virology , Cell Cycle Proteins , DNA-Binding Proteins , Genetic Vectors/therapeutic use , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Liver Neoplasms/virology , Transcription Factors/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , E2F Transcription Factors , E2F1 Transcription Factor , Enzyme-Linked Immunosorbent Assay , Female , Genetic Vectors/genetics , Humans , In Vitro Techniques , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Mice , Mice, Nude , Promoter Regions, Genetic , Tumor Cells, Cultured , Virus Replication , Xenograft Model Antitumor Assays
4.
Cancer Res ; 63(7): 1490-9, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12670895

ABSTRACT

The use of oncolytic adenoviruses as a cancer therapeutic is dependent on the lytic properties of the viral life cycle, and the molecular differences between tumor cells and nontumor cells. One strategy for achieving safe and efficacious adenoviral therapies is to control expression of viral early gene(s) required for replication with tumor-selective promoter(s), particularly those active in a broad range of cancer cells. The retinoblastoma tumor suppressor protein (Rb) pathway is dysregulated in a majority of human cancers. The human E2F-1 promoter has been shown to be selectively activated/derepressed in tumor cells with a defect in the Rb pathway. Ar6pAE2fE3F and Ar6pAE2fF are oncolytic adenoviral vectors (with and without the viral E3 region, respectively) that use the tumor-selective E2F-1 promoter to limit expression of the viral E1A transcription unit, and, thus, replication, to tumor cells. We demonstrate that the antitumor activity of Ar6pAE2fF in vitro and in vivo is dependent on the E2F-1 promoter driving E1A expression in Rb pathway-defective cells, and furthermore, that its oncolytic activity is enhanced by viral replication. Selective oncolysis by Ar6pAE2fF was dependent on the presence of functional E2F binding sites in the E2F-1 promoter, thus linking antitumor viral activity to the Rb pathway. Potent antitumor efficacy was demonstrated with Ar6pAE2fF and Ar6pAE2fE3F in a xenograft model following intratumoral administration. Ar6pAE2fF and Ar6pAE2fE3F were compared with Addl1520, which is reported to be molecularly identical to an E1B-55K deleted vector currently in clinical trials. These vectors were compared in in vitro cytotoxicity and virus production assays, after systemic delivery in an in vivo E1A-related hepatotoxicity model, and in a mouse xenograft tumor model after intratumoral administration. Our results support the use of oncolytic adenoviruses using tumor-selective promoter(s) that are activated or derepressed in tumor cells by virtue of a particular defective pathway, such as the Rb pathway.


Subject(s)
Adenoviridae/physiology , Adenovirus E1A Proteins/biosynthesis , Cell Cycle Proteins , DNA-Binding Proteins , Neoplasms/virology , Retinoblastoma Protein/physiology , Transcription Factors/genetics , Adenoviridae/genetics , Adenoviridae/metabolism , Adenovirus E1A Proteins/genetics , Animals , Binding Sites , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/virology , Cytopathogenic Effect, Viral/physiology , E2F Transcription Factors , E2F1 Transcription Factor , Genetic Vectors/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/virology , Male , Mice , Mice, SCID , Neoplasms/genetics , Neoplasms/therapy , Promoter Regions, Genetic , Retinoblastoma Protein/metabolism , Signal Transduction/physiology , Tumor Cells, Cultured , Virus Replication , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...