Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 46(6): 1341-1348, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293843

ABSTRACT

Due to a shortage of available phosphorus (P)-loss datasets, simulated data from an accurate quantitative P transport model could be used to evaluate a P Index. The objective of this study was to compare predictions from the Texas Best Management Practice Evaluation Tool (TBET) against measured P-loss data to determine whether the model could be used to improve P Indices in the southern region. Measured P-loss data from field-scale study sites in Arkansas, Georgia, and North Carolina were used to assess the accuracy of TBET for predicting field-scale loss of P. We found that event-based predictions using an uncalibrated model were generally poor. Calibration improved runoff predictions and produced scatterplot regression lines that had slopes near one and intercepts near zero. However, TBET predictions of runoff met the performance criteria (Nash-Sutcliffe efficiency ≥ 0.3, percent bias ≤ 35%, and mean absolute error ≤ 10 mm) in only one out of six comparisons: North Carolina during calibration. Sediment predictions were imprecise, and dissolved P predictions underestimated measured losses. In North Carolina, total P-loss predictions were reasonably accurate because TBET did a slightly better job of predicting sediment losses from cultivated land. In Arkansas and Georgia, where the experimental sites were in forage production, the underprediction of dissolved P led directly to the underpredictions of total P. We conclude that TBET cannot be used to improve southern P Indices, but a curve number approach could be incorporated into P Indices to improve runoff predictions.


Subject(s)
Models, Theoretical , Phosphorus/analysis , Water Quality , Arkansas , North Carolina , Texas
2.
J Environ Qual ; 46(6): 1314-1322, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293849

ABSTRACT

A wide range of mathematical models are available for predicting phosphorus (P) losses from agricultural fields, ranging from simple, empirically based annual time-step models to more complex, process-based daily time-step models. In this study, we compare field-scale P-loss predictions between the Annual P Loss Estimator (APLE), an empirically based annual time-step model, and the Texas Best Management Practice Evaluation Tool (TBET), a process-based daily time-step model based on the Soil and Water Assessment Tool. We first compared predictions of field-scale P loss from both models using field and land management data collected from 11 research sites throughout the southern United States. We then compared predictions of P loss from both models with measured P-loss data from these sites. We observed a strong and statistically significant ( < 0.001) correlation in both dissolved (ρ = 0.92) and particulate (ρ = 0.87) P loss between the two models; however, APLE predicted, on average, 44% greater dissolved P loss, whereas TBET predicted, on average, 105% greater particulate P loss for the conditions simulated in our study. When we compared model predictions with measured P-loss data, neither model consistently outperformed the other, indicating that more complex models do not necessarily produce better predictions of field-scale P loss. Our results also highlight limitations with both models and the need for continued efforts to improve their accuracy.


Subject(s)
Models, Theoretical , Phosphorus/analysis , Agriculture , Soil , Texas , Water Pollutants
3.
J Environ Qual ; 46(6): 1357-1364, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293856

ABSTRACT

The Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia. Calibrated models satisfactorily predicted event-based surface runoff volumes at all sites (Nash-Sutcliffe efficiency [NSE] > 0.47, |percent bias [PBIAS]| < 34) except Arkansas (NSE < 0.11, |PBIAS| < 50) but did not satisfactory simulate sediment, dissolved P, or total P losses in runoff water. The APEX model tended to underestimate dissolved and total P losses from fields where manure was surface applied. The model also overestimated sediments and total P loads during irrigation events. We conclude that the capability of APEX to predict sediment and P losses is limited, and consequently so is the potential for using APEX to make P management recommendations to improve P Indices in the southern United States.


Subject(s)
Agriculture , Phosphorus/analysis , Water Quality , Arkansas , Mississippi , North Carolina , United States , Water Movements
4.
J Environ Qual ; 46(6): 1296-1305, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293862

ABSTRACT

Phosphorus (P) Indices in the southern United States frequently produce different recommendations for similar conditions. We compared risk ratings from 12 southern states (Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, and Texas) using data collected from benchmark sites in the South (Arkansas, Georgia, Mississippi, North Carolina, Oklahoma, and Texas). Phosphorus Index ratings were developed using both measured erosion losses from each benchmark site and Revised Universal Soil Loss Equation 2 predictions; mostly, there was no difference in P Index outcome. The derived loss ratings were then compared with measured P loads at the benchmark sites by using equivalent USDA-NRCS P Index ratings and three water quality models (Annual P Loss Estimator [APLE], Agricultural Policy Environmental eXtender [APEX], and Texas Best Management Practice Evaluation Tool [TBET]). Phosphorus indices were finally compared against each other using USDA-NRCS loss ratings model estimate correspondence with USDA-NRCS loss ratings. Correspondence was 61% for APEX, 48% for APLE, and 52% for TBET, with overall P index correspondence at 55%. Additive P Indices (Alabama and Texas) had the lowest USDA-NRCS loss rating correspondence (31%), while the multiplicative (Arkansas, Florida, Louisiana, Mississippi, South Carolina, and Tennessee) and component (Georgia, Kentucky, and North Carolina) indices had similar USDA-NRCS loss rating correspondence-60 and 64%, respectively. Analysis using Kendall's modified Tau suggested that correlations between measured and calculated P-loss ratings were similar or better for most P Indices than the models.


Subject(s)
Phosphorus/analysis , Water Quality , Environmental Monitoring , Models, Theoretical , United States , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...