Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Case Rep Oncol Med ; 2019: 7950782, 2019.
Article in English | MEDLINE | ID: mdl-31885975

ABSTRACT

Radiation-induced sarcomas in the brain are extremely rare, usually occur with an average latency of 9 years, and are associated with poor outcomes. Latency periods shorter than 1 year may indicate a genetic predisposition such as Li-Fraumeni syndrome. A 34-year-old man underwent initial tumor resection and radiation therapy for a World Health Organization (WHO) Grade II Astrocytoma. Within 6 months, the tumor recurred as WHO Grade III and was treated with temozolomide and then bevacizumab. Despite the patient's apparent improving condition, MRI revealed new dural-based lesions 10 months after radiation therapy and identified as high-grade sarcoma. The patient resumed bevacizumab, began NovoTTF treatment for progressing glioma, and ifosfamide/doxorubicin for the sarcoma. Genetic testing revealed no pathogenic mutation in the TP53 gene. Ultimately, treatment was unsuccessful and the patient succumbed to glioma and sarcoma within 2 years of initial diagnosis. This case was unique due to the rapidly progressing glioma and sudden appearance of a high-grade sarcoma. It is unusual to have two separate intracranial primary cancers with each requiring a different chemotherapy regimen. We discuss the difficulty of simultaneously treating with separate chemotherapy regimens. It remains unclear whether the sarcoma was induced by the radiation treatment or a genetic predisposition.

2.
Neurosci Lett ; 584: 362-7, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25445365

ABSTRACT

In addition to the hallmark accumulation of amyloid and hyper-phosphorylation of tau, brain changes in Alzheimer's disease are multifactorial including inflammation, oxidative stress, and metal dysregulation. Metal chelators have been explored as a less well known approach to treatment. One chelator currently being developed is deferoxamine (DFO), administered via the intranasal (IN) route. In the current study, APP/PS1 amyloid mice were treated with a chronic, low dose of IN DFO, subjected to a rigorous battery of behavior tests, and the mechanism of action was examined. Mice were treated 3x/week with 0.24 C IN DFO for 18 weeks from 36 to 54 weeks of age, 4 weeks of behavior tests were performed that included both working and reference memory, anxiolytic and motor behaviors, and finally brain tissues were analyzed for amyloid, protein oxidation, and other proteins affected by DFO. We found that IN DFO treatment significantly decreased loss of both reference and working memory in the Morris and radial arm water mazes (p < 0.05), and also decreased soluble Aß40 and Aß42 in cortex and hippocampus (p < 0.05). Further, IN DFO decreased activity of GSK3ß, and led to decreases in oxidative stress (p < 0.05). These data demonstrate that low doses of IN DFO can modify several targets along the multiple pathways implicated in the neuropathology of Alzheimer's, making it an attractive candidate for the treatment of this heterogeneous disease.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/genetics , Amyloid/metabolism , Deferoxamine/pharmacology , Iron Chelating Agents/pharmacology , Memory Disorders/drug therapy , Presenilin-1/genetics , Administration, Intranasal , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Animals , Deferoxamine/therapeutic use , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Iron Chelating Agents/therapeutic use , Male , Memory Disorders/metabolism , Memory Disorders/psychology , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Mice, Transgenic , Oxidative Stress , Signal Transduction , beta Catenin
SELECTION OF CITATIONS
SEARCH DETAIL
...