Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 02 15.
Article in English | MEDLINE | ID: mdl-35164902

ABSTRACT

Background: Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia. Methods: The ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes. Results: Exposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes. Conclusions: We conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use. Funding: This work was supported by grants from the Swedish Research Council, Stockholm County Research Council, Stockholm Regional Research Foundation, Bert von Kantzows Foundation, Swedish Society of Medicine, Kung Gustaf V:s och Drottning Victorias Frimurarestifelse, Karolinska Institute's Research Foundations, Strategic Research Programme in Diabetes, and Erling-Persson Family Foundation for S-B.C.; grants from the Swedish Research Council and Swedish Heart and Lung Foundation for T.A.S.; and ERC consolidator grant for M.M.


Subject(s)
Diabetes Mellitus/genetics , Hypoxia-Inducible Factor 1/antagonists & inhibitors , Hypoxia-Inducible Factor 1/genetics , Hypoxia , Mitochondria/metabolism , Reactive Oxygen Species/blood , Reactive Oxygen Species/metabolism , Adult , Animals , Cell Line , Diabetes Complications , Diabetes Mellitus/blood , Female , Humans , Hyperglycemia/genetics , Kidney/pathology , Male , Mice , Signal Transduction , Young Adult
2.
J Endocrinol ; 225(3): 159-67, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25869614

ABSTRACT

IGF binding protein 1 (IGFBP1) is a member of the binding proteins for the IGF with an important role in glucose homeostasis. Circulating IGFBP1 is derived essentially from the liver where it is mainly regulated negatively by insulin. Carnosine, a natural antioxidant, has been shown to improve metabolic control in different animal models of diabetes but its mechanisms of action are still not completely unraveled. We therefore investigate the effect of carnosine treatment on the IGFBP1 regulation in db/db mice. Db/db mice and heterozygous non-diabetic mice received for 4 weeks regular water or water supplemented with carnosine. Igfbp1 mRNA expression in the liver was evaluated using qPCR and the protein levels in plasma by western blot. Plasma IGF1 and insulin were analyzed using immunoassays. HepG2 cells were used to study the in vitro effect of carnosine on IGFBP1. The modulation of hypoxia inducible factor-1 alpha (HIF-1α) which is the central mediator of hypoxia-induction of IGFBP1 was analyzed using: WB, reporter gene assay and qPCR. Carnosine decreased the circulating IGFBP1 levels and the liver expression Igfbp1, through a complex mechanism acting both directly by suppressing the HIF-1α-mediated IGFBP1 induction and indirectly through increasing circulating insulin level followed by a decrease in the blood glucose levels and increased the plasma levels or IGF1. Reduction of IGFBP1 in diabetes through insulin-dependent and insulin-independent pathways is a novel mechanism by which carnosine contributes to the improvement of the metabolic control in diabetes.


Subject(s)
Carnosine/metabolism , Down-Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin-Like Growth Factor Binding Protein 1/metabolism , Liver/metabolism , Animals , Antioxidants/metabolism , Antioxidants/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Carnosine/therapeutic use , Cell Hypoxia , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/metabolism , Dietary Supplements , Genes, Reporter , Hep G2 Cells , Heterozygote , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Insulin Resistance , Insulin-Like Growth Factor Binding Protein 1/blood , Insulin-Like Growth Factor Binding Protein 1/genetics , Male , Mice, Mutant Strains , Obesity/complications , Response Elements
SELECTION OF CITATIONS
SEARCH DETAIL
...