Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(9)2018 Sep 16.
Article in English | MEDLINE | ID: mdl-30223604

ABSTRACT

Airborne gravimetry from a helicopter has been a feasible tool since the 1990s, with gravimeters mounted on a gyro-stabilised platform. In contrast to fixed-wing aircrafts, the helicopter allows for a higher spatial resolution, since it can move slower and closer to the ground. In August 2016, a strapdown gravimetry test was carried out over the Jakobshavn Glacier in Greenland. To our knowledge, this was the first time that a strapdown system was used in a helicopter. The strapdown configuration is appealing because it is easily installed and requires no operation during flight. While providing additional information over the thickest part of the glacier, the survey was designed to assess repeatability both within the survey and with respect to profiles flown previously using a gyro-stabilised gravimeter. The system's ability to fly at an altitude following the terrain, i.e., draped flying, was also tested. The accuracy of the gravity profiles was estimated to 2 mGal and a method for inferring the spatial resolution was investigated, yielding a half-wavelength spatial resolution of 4.5 km at normal cruise speed.

2.
Sensors (Basel) ; 15(6): 13258-69, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26057039

ABSTRACT

An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level.

3.
Science ; 338(6111): 1183-9, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23197528

ABSTRACT

We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise.


Subject(s)
Climate Change , Ice Cover , Antarctic Regions , Geographic Information Systems , Greenland
4.
Proc Natl Acad Sci U S A ; 109(30): 11944-8, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22786931

ABSTRACT

The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Crustal displacement is largely accounted for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth's elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR), implying that uplift is usually dominated by the solid earth's instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous 'pulse' of uplift accumulated at many GNET stations during an approximate six-month period in 2010. This anomalous uplift is spatially correlated with the 2010 melting day anomaly.


Subject(s)
Climate Change , Climate , Geological Phenomena , Ice Cover , Elasticity , Geographic Information Systems , Greenland , Seasons
5.
Nature ; 416(6876): 35, 2002 Mar 07.
Article in English | MEDLINE | ID: mdl-11882882

ABSTRACT

Tobias Island, discovered in 1993 by the German research vessel RV Polarstern, is a system of low-lying banks and shoals hidden in sea ice 70 km off the northeastern coast of Greenland. Here we use satellite radar interferometry and airborne laser scanning to show that this island is 2 km long and 35 m high --- much larger than was originally reported. We have also been able to pinpoint the exact location of a stable area where a new group of small islands may be hidden. This demonstrates that satellite radar interferometry is an effective tool for finding ice-covered islands as well as for mapping them.

SELECTION OF CITATIONS
SEARCH DETAIL
...