Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 17(7)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31266202

ABSTRACT

Quorum sensing (QS) antagonists have been proposed as novel therapeutic agents to combat bacterial infections. We previously reported that the secondary metabolite 3-methyl-N-(2'-phenylethyl)-butyramide, produced by a marine bacterium identified as Halobacillus salinus, inhibits QS controlled phenotypes in multiple Gram-negative reporter strains. Here we report that N-phenethyl hexanamide, a structurally-related compound produced by the marine bacterium Vibrio neptunius, similarly demonstrates QS inhibitory properties. To more fully explore structure-activity relationships within this new class of QS inhibitors, a panel of twenty analogs was synthesized and biologically evaluated. Several compounds were identified with increased attenuation of QS-regulated phenotypes, most notably N-(4-fluorophenyl)-3-phenylpropanamide against the marine pathogen Vibrio harveyi (IC50 = 1.1 µM). These findings support the opportunity to further develop substituted phenethylamides as QS inhibitors.


Subject(s)
Amides/pharmacology , Anti-Bacterial Agents/pharmacology , Halobacillus/metabolism , Quorum Sensing/drug effects , Amides/chemistry , Amides/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Inhibitory Concentration 50 , Secondary Metabolism , Structure-Activity Relationship , Vibrio/drug effects , Vibrio/physiology
2.
Molecules ; 21(8)2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27463706

ABSTRACT

Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS)-a cell-cell communication system in bacteria-controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that ß-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen ß-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype) in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl ß-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the ß-keto ester panel will enable us to obtain more insight into the structure-activity relationships needed to allow for the development of novel anti-virulence agents.


Subject(s)
Esters/chemical synthesis , Esters/pharmacology , Quorum Sensing/drug effects , Esters/chemistry , Luminescent Measurements , Molecular Structure , Structure-Activity Relationship , Vibrio/drug effects
3.
Front Microbiol ; 4: 8, 2013.
Article in English | MEDLINE | ID: mdl-23386845

ABSTRACT

Vibrio cholerae is a human pathogenic marine bacterium inhabiting coastal regions and is vectored into human food and water supplies via attachment to particles including detritus, phytoplankton, and zooplankton. Particle colonization by the pathogen is inhibited by an antagonistic interaction with the particle-associated Vibrionales bacterium SWAT3, a producer of the antibiotic andrimid. By analyzing the individual movement behaviors of V. cholerae exposed to a gradient of andrimid in a microfluidics device, we show that the pathogen has a concentration dependent avoidance response to sub-lethal concentrations of the pure antibiotic and to the metabolites produced by a growing colony of SWAT3-wild-type. This avoidance behavior includes a 25% increase in swimming speeds, 30% increase in run lengths, and a shift in the direction of the bacteria away from the andrimid source. Consequently, these behavioral shifts at low concentrations of andrimid would lead to higher diffusivity and result in the dispersion of bacteria away from the competitor and source of the antibiotic. Such alterations in motility were not elicited in response to a non-andrimid-producing SWAT3 mutant, suggesting andrimid may be a negative effector of chemotaxis for V. cholerae. The behavioral response of colonizing bacteria to sub-inhibitory concentrations of competitor-produced antibiotics is one mechanism that can influence microbial diversity and interspecific competition on particles, potentially affecting human health in coastal communities and element cycling in the ocean.

4.
FEMS Microbiol Ecol ; 84(3): 510-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23360553

ABSTRACT

Sediment samples collected off the coast of San Diego were analyzed for actinomycete diversity using culture-independent techniques. Eight new operational taxonomic units (OTUs) in the Streptomycetaceae were identified as well as new diversity within previously cultured marine OTUs. Sequences belonging to the marine actinomycete genus Salinispora were also detected, despite the fact that this genus has only been reported from more tropical environments. Independent analyses of marine sediments from the Canary Basin (3814 m) and the South Pacific Gyre (5126 and 5699 m) also revealed Salinispora sequences providing further support for the occurrence of this genus in deep-sea sediments. Efforts to culture Salinispora spp. from these samples have yet to be successful. This is the first report of Salinispora spp. from marine sediments > 1100 m and suggests that the distribution of this genus is broader than previously believed.


Subject(s)
Actinobacteria/isolation & purification , Geologic Sediments/microbiology , Streptomycetaceae/isolation & purification , Actinobacteria/classification , Actinobacteria/genetics , Base Sequence , Micromonosporaceae/classification , Micromonosporaceae/genetics , Micromonosporaceae/isolation & purification , Pacific Ocean , Phylogeny , Streptomycetaceae/classification , Streptomycetaceae/genetics
6.
Mar Biotechnol (NY) ; 13(4): 722-32, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21152942

ABSTRACT

Inhibitors of bacterial quorum sensing have been proposed as potentially novel therapeutics for the treatment of certain bacterial diseases. We recently reported a marine Halobacillus salinus isolate that secretes secondary metabolites capable of quenching quorum sensing phenotypes in several Gram-negative reporter strains. To investigate how widespread the production of such compounds may be in the marine bacterial environment, 332 Gram-positive isolates from diverse habitats were tested for their ability to interfere with Vibrio harveyi bioluminescence, a cell signaling-regulated phenotype. Rapid assay methods were employed where environmental isolates were propagated alongside the reporter strain. "Actives" were defined as bacteria that interfered with bioluminescence without visible cell-killing effects (antibiotic activity). A total of 49 bacterial isolates interfered with bioluminescence production in the assays. Metabolite extracts were generated from cultures of the active isolates, and 28 reproduced the bioluminescence inhibition against V. harveyi. Of those 28, five extracts additionally inhibited violacein production by Chromobacterium violaceum. Chemical investigations revealed that phenethylamides and a cyclic dipeptide are two types of secondary metabolites responsible for the observed activities. The active bacterial isolates belonged primarily to either the genus Bacillus or Halobacillus. The results suggest that Gram-positive marine bacteria are worthy of further investigation for the discovery of quorum sensing antagonists.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aquatic Organisms/chemistry , Bacillaceae/chemistry , Geologic Sediments/microbiology , Invertebrates/microbiology , Quorum Sensing/drug effects , Vibrio/drug effects , Animals , Anti-Bacterial Agents/isolation & purification , Bahamas , Base Sequence , Chromobacterium/chemistry , Cluster Analysis , DNA Primers/genetics , Indoles/antagonists & inhibitors , Luminescent Proteins/metabolism , Molecular Sequence Data , New England , Phylogeny , Puerto Rico , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...