Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tuberculosis (Edinb) ; 91(2): 127-35, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21251882

ABSTRACT

RecX is a small protein that interacts with, and modulates the activity of, RecA protein. In mycobacteria the recX gene is located immediately downstream of the recA gene, and the coding regions overlap. It has previously been shown that these two genes are co-transcribed in Mycobacterium smegmatis. In this study we examine the expression of recX in Mycobacterium tuberculosis. In addition to being co-transcribed with recA from the DNA-damage inducible recA promoters, we identify a constitutive recX promoter located within the recA coding sequence that is strong enough to make a significant contribution to the expression level of recX in the absence of DNA damage. Intriguingly, this promoter is inactivated in M. smegmatis by a critical base change in the -10 promoter motif, which probably accounts for the lower level of expression of recX relative to recA that we observed in that species. It is possible that this difference in relative expression influences RecA functions including the response to DNA damage of LexA-regulated genes.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Rec A Recombinases/genetics , Bacterial Proteins/genetics , Base Sequence , Conserved Sequence/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Molecular Sequence Data , Mycobacterium smegmatis/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Open Reading Frames/genetics , Operon/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , RNA, Bacterial/genetics , Rec A Recombinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Alignment , Species Specificity , Transcription, Genetic
2.
J Biol Chem ; 282(9): 6792-802, 2007 Mar 02.
Article in English | MEDLINE | ID: mdl-17204477

ABSTRACT

A collagen-based extracellular matrix is one defining feature of all Metazoa. The thick sheet-like extracellular matrix (mesoglia) of the diploblast, hydra, has characteristics of both a basement membrane and an interstitial matrix. Several genes associated with mesoglea have been cloned including a basement membrane and fibrillar collagen and an A and B chain of laminin. Here we report the characterization of a further three fibrillar collagen genes (Hcol2, Hcol3, and Hcol5) and the partial sequence of a collagen gene with a unique structural organization consisting of multiple von Willebrand factor A domains interspersed with interrupted collagenous triple helices (Hcol6) from Hydra vulgaris. Hcol2 and -5 have major collagenous domains of classical length ( approximately 1020 amino acid residues), whereas the equivalent domain in Hcol3 is shorter (969 residues). The N-propeptide of Hcol2 contains a whey acid protein four-cysteine repeat (WAP) domain, and the equivalent domain of Hcol3 contains two WAP and two von Willebrand factor A domains. Phylogenetic analyses reveal that the hydra fibrillar collagen genes form a distinct clade that appears related to the protostome/deuterostome A clade of fibrillar collagens. Data base searches reveal Hcol2, -5, and -6 are highly conserved in Hydra magnipapillata, which also provided preliminary evidence for the expression of a B-clade fibrillar collagen. All four of the H. vulgaris collagens are expressed specifically by the ectoderm. The expression pattern for Hcol2 is similar to that previously reported for Hcol1 (Deutzmann, R., Fowler, S., Zhang, X., Boone, K., Dexter, S., Boot-Handford, R. P., Rachel, R., and Sarras, M. P., Jr. (2000) Development 127, 4669-4680) but distinct from the pattern shared by Hcol3 and Hcol5. The characterization of multiple collagen genes in relatively simple diploblastic organisms provides new insights into the molecular evolution of collagens and the origins of the collagen-based extracellular matrix found throughout the multicellular animal kingdom.


Subject(s)
Biological Evolution , Extracellular Matrix/genetics , Fibrillar Collagens/genetics , Hydra/genetics , Animals , Base Sequence , Extracellular Matrix/chemistry , Fibrillar Collagens/chemistry , Phylogeny , Protein Conformation , von Willebrand Factor
SELECTION OF CITATIONS
SEARCH DETAIL
...