Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neurotherapeutics ; 21(1): e00295, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38237402

ABSTRACT

Essential tremor DBS targeting the ventral intermediate nucleus (Vim) of the thalamus and its input, the dentato-rubro-thalamic tract (DRTt), has proven to be an effective treatment strategy. We examined thalamo-cortical evoked potentials (TCEPs) and cortical dynamics during stimulation of the DRTt. We recorded TCEPs in primary motor cortex during clinical and supra-clinical stimulation of the DRTt in ten essential tremor patients. Stimulation was varied over pulse amplitude (2-10 â€‹mA) and pulse width (30-250 â€‹µs) to allow for strength-duration testing. Testing at clinical levels (3 â€‹mA, 60 â€‹µs) for stimulation frequencies of 1-160 â€‹Hz was performed and phase amplitude coupling (PAC) of beta phase and gamma power was calculated. Primary motor cortex TCEPs displayed two responses: early and all-or-none (<20 â€‹ms) or delayed and charge-dependent (>50 â€‹ms). Strength-duration curve approximation indicates that the chronaxie of the neural elements related to the TCEPs is <200 â€‹µs. At the range of clinical stimulation (amplitude 2-5 â€‹mA, pulse width 30-60 â€‹µs), TCEPs were not noted over primary motor cortex. Decreased pathophysiological phase-amplitude coupling was seen above 70 â€‹Hz stimulation without changes in power spectra and below the threshold of TCEPs. Our findings demonstrate that DRTt stimulation within normal clinical bounds does not excite fibers directly connected with primary motor cortex but that supra-clinical stimulation can excite a direct axonal tract. Both clinical efficacy and phase-amplitude coupling were frequency-dependent, favoring a synaptic filtering model as a possible mechanism of action.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Essential Tremor/therapy , Neural Pathways , Thalamus , Evoked Potentials
2.
Nat Commun ; 14(1): 6336, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875526

ABSTRACT

Language depends critically on the integration of lexical information across multiple words to derive semantic concepts. Limitations of spatiotemporal resolution have previously rendered it difficult to isolate processes involved in semantic integration. We utilized intracranial recordings in epilepsy patients (n = 58) who read written word definitions. Descriptions were either referential or non-referential to a common object. Semantically referential sentences enabled high frequency broadband gamma activation (70-150 Hz) of the inferior frontal sulcus (IFS), medial parietal cortex, orbitofrontal cortex (OFC) and medial temporal lobe in the left, language-dominant hemisphere. IFS, OFC and posterior middle temporal gyrus activity was modulated by the semantic coherence of non-referential sentences, exposing semantic effects that were independent of task-based referential status. Components of this network, alongside posterior superior temporal sulcus, were engaged for referential sentences that did not clearly reduce the lexical search space by the final word. These results indicate the existence of complementary cortical mosaics for semantic integration in posterior temporal and inferior frontal cortex.


Subject(s)
Brain Mapping , Semantics , Humans , Brain Mapping/methods , Brain/physiology , Language , Temporal Lobe/physiology , Magnetic Resonance Imaging/methods
3.
Epilepsia ; 64(9): 2286-2296, 2023 09.
Article in English | MEDLINE | ID: mdl-37350343

ABSTRACT

OBJECTIVE: MR-guided laser interstitial thermal therapy (LITT) is used increasingly for refractory epilepsy. The goal of this investigation is to directly compare cost and short-term adverse outcomes for adult refractory epilepsy treated with temporal lobectomy and LITT, as well as to identify risk factors for increased costs and adverse outcomes. METHODS: The National Inpatient Sample (NIS) was queried for patients who received LITT between 2012 and 2019. Patients with adult refractory epilepsy were identified. Multivariable mixed-effects models were used to analyze predictors of cost, length of stay (LOS), and complications. RESULTS: LITT was associated with reduced LOS and overall cost relative to temporal lobectomy, with a statistical trend toward lower incidence of postoperative complications. High-volume surgical epilepsy centers had lower LOS overall. Longer LOS was a significant driver of increased cost for LITT, and higher comorbidity was associated with non-routine discharge. SIGNIFICANCE: LITT is an affordable alternative to temporal lobectomy for adult refractory epilepsy with an insignificant reduction in inpatient complications. Patients may benefit from expanded access to this treatment modality for both its reduced LOS and lower cost.


Subject(s)
Drug Resistant Epilepsy , Laser Therapy , Humans , Adult , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/etiology , Treatment Outcome , Laser Therapy/adverse effects , Costs and Cost Analysis , Lasers , Magnetic Resonance Imaging
5.
Epilepsia ; 64(5): 1200-1213, 2023 05.
Article in English | MEDLINE | ID: mdl-36806185

ABSTRACT

OBJECTIVE: Lexical retrieval deficits are characteristic of a variety of different neurological disorders. However, the exact substrates responsible for this are not known. We studied a large cohort of patients undergoing surgery in the dominant temporal lobe for medically intractable epilepsy (n = 95) to localize brain regions that were associated with anomia. METHODS: We performed a multivariate voxel-based lesion-symptom mapping analysis to correlate surgical lesions within the temporal lobe with changes in naming ability. Additionally, we used a surface-based mixed-effects multilevel analysis to estimate group-level broadband gamma activity during naming across a subset of patients with electrocorticographic recordings and integrated these results with lesion-deficit findings. RESULTS: We observed that ventral temporal regions, centered around the middle fusiform gyrus, were significantly associated with a decline in naming. Furthermore, we found that the ventral aspect of temporal lobectomies was linearly correlated to a decline in naming, with a clinically significant decline occurring once the resection extended 6 cm from the anterior tip of the temporal lobe on the ventral surface. On electrocorticography, the majority of these cortical regions were functionally active following visual processing. These loci coincide with the sites of susceptibility artifacts during echoplanar imaging, which may explain why this region has been previously underappreciated as the locus responsible for postoperative naming deficits. SIGNIFICANCE: Taken together, these data highlight the crucial contribution of the ventral temporal cortex in naming and its important role in the pathophysiology of anomia following temporal lobe resections. As such, surgical strategies should attempt to preserve this region to mitigate postoperative language deficits.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/pathology , Anomia/etiology , Brain Mapping/methods , Temporal Lobe/diagnostic imaging , Temporal Lobe/surgery , Temporal Lobe/pathology , Language
6.
Neuroimage ; 256: 119262, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35504563

ABSTRACT

Visual inputs to early visual cortex integrate with semantic, linguistic and memory inputs in higher visual cortex, in a manner that is rapid and accurate, and enables complex computations such as face recognition and word reading. This implies the existence of fundamental organizational principles that enable such efficiency. To elaborate on this, we performed intracranial recordings in 82 individuals while they performed tasks of varying visual and cognitive complexity. We discovered that visual inputs induce highly organized posterior-to-anterior propagating patterns of phase modulation across the ventral occipitotemporal cortex. At individual electrodes there was a stereotyped temporal pattern of phase progression following both stimulus onset and offset, consistent across trials and tasks. The phase of low frequency activity in anterior regions was predicted by the prior phase in posterior cortical regions. This spatiotemporal propagation of phase likely serves as a feed-forward organizational influence enabling the integration of information across the ventral visual stream. This phase modulation manifests as the early components of the event related potential; one of the most commonly used measures in human electrophysiology. These findings illuminate fundamental organizational principles of the higher order visual system that enable the rapid recognition and characterization of a variety of inputs.


Subject(s)
Visual Cortex , Humans , Pattern Recognition, Visual/physiology , Reading , Recognition, Psychology , Visual Cortex/physiology
7.
Sci Data ; 9(1): 28, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102154

ABSTRACT

For most people, recalling information about familiar items in a visual scene is an effortless task, but it is one that depends on coordinated interactions of multiple, distributed neural components. We leveraged the high spatiotemporal resolution of direct intracranial recordings to better delineate the network dynamics underpinning visual scene recognition. We present a dataset of recordings from a large cohort of humans while they identified images of famous landmarks (50 individuals, 52 recording sessions, 6,775 electrodes, 6,541 trials). This dataset contains local field potential recordings derived from subdural and penetrating electrodes covering broad areas of cortex across both hemispheres. We provide this pre-processed data with behavioural metrics (correct/incorrect, response times) and electrode localisation in a population-normalised cortical surface space. This rich dataset will allow further investigation into the spatiotemporal progression of multiple neural processes underlying visual processing, scene recognition and cued memory recall.


Subject(s)
Electroencephalography , Memory , Cognition , Humans , Memory/physiology , Mental Recall/physiology , Visual Perception/physiology
8.
Nat Hum Behav ; 5(3): 389-398, 2021 03.
Article in English | MEDLINE | ID: mdl-33257877

ABSTRACT

Reading is a rapid, distributed process that engages multiple components of the ventral visual stream. To understand the neural constituents and their interactions that allow us to identify written words, we performed direct intra-cranial recordings in a large cohort of humans. This allowed us to isolate the spatiotemporal dynamics of visual word recognition across the entire left ventral occipitotemporal cortex. We found that mid-fusiform cortex is the first brain region sensitive to lexicality, preceding the traditional visual word form area. The magnitude and duration of its activation are driven by the statistics of natural language. Information regarding lexicality and word frequency propagates posteriorly from this region to visual word form regions and to earlier visual cortex, which, while active earlier, show sensitivity to words later. Further, direct electrical stimulation of this region results in reading arrest, further illustrating its crucial role in reading. This unique sensitivity of mid-fusiform cortex to sub-lexical and lexical characteristics points to its central role as the orthographic lexicon-the long-term memory representations of visual word forms.


Subject(s)
Memory, Long-Term/physiology , Occipital Lobe/physiology , Pattern Recognition, Visual/physiology , Psycholinguistics , Reading , Temporal Lobe/physiology , Visual Pathways/physiology , Adult , Electric Stimulation , Electrocorticography , Humans , Time Factors , Visual Cortex/physiology , Young Adult
9.
Curr Biol ; 30(14): 2707-2715.e3, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32502406

ABSTRACT

The rapid recognition and memory of faces and scenes implies the engagement of category-specific computational hubs in the ventral visual stream with the distributed cortical memory network. To better understand how recognition and identification occur in humans, we performed direct intracranial recordings, in a large cohort of patients (n = 50), from the medial parietal cortex (MPC) and the medial temporal lobe (MTL), structures known to be engaged during face and scene identification. We discovered that the MPC is topologically tuned to face and scene recognition, with clusters in MPC performing scene recognition bilaterally and face recognition in right subparietal sulcus. The MTL displayed a selectivity gradient with anterior, entorhinal cortex showing face selectivity and posterior parahippocampal regions showing scene selectivity. In both MPC and MTL, stimulus-specific identifiable exemplars led to greater activity in these cortical patches. These two regions work in concert for recognition of faces and scenes. Feature selectivity and identity-sensitive activity in the two regions was coincident, and they exhibited theta-phase locking during face and scene recognition. These findings together provide clear evidence for a specific role of subregions in the MPC for the recognition of unique entities.


Subject(s)
Face/physiology , Facial Recognition/physiology , Parietal Lobe/physiology , Pattern Recognition, Visual/physiology , Recognition, Psychology/physiology , Adolescent , Adult , Cohort Studies , Electroencephalography , Female , Humans , Male , Memory/physiology , Middle Aged , Parahippocampal Gyrus/physiology , Temporal Lobe/physiology , Young Adult
10.
eNeuro ; 6(4)2019.
Article in English | MEDLINE | ID: mdl-31196941

ABSTRACT

Brain computations involve multiple processes by which sensory information is encoded and transformed to drive behavior. These computations are thought to be mediated by dynamic interactions between populations of neurons. Here, we demonstrate that human brains exhibit a reliable sequence of neural interactions during speech production. We use an autoregressive Hidden Markov Model (ARHMM) to identify dynamical network states exhibited by electrocorticographic signals recorded from human neurosurgical patients. Our method resolves dynamic latent network states on a trial-by-trial basis. We characterize individual network states according to the patterns of directional information flow between cortical regions of interest. These network states occur consistently and in a specific, interpretable sequence across trials and subjects: the data support the hypothesis of a fixed-length visual processing state, followed by a variable-length language state, and then by a terminal articulation state. This empirical evidence validates classical psycholinguistic theories that have posited such intermediate states during speaking. It further reveals these state dynamics are not localized to one brain area or one sequence of areas, but are instead a network phenomenon.


Subject(s)
Cerebral Cortex/physiology , Neurons/physiology , Pattern Recognition, Visual/physiology , Speech/physiology , Adult , Bayes Theorem , Electrocorticography , Female , Humans , Male , Markov Chains , Models, Neurological , Neural Pathways/physiology , Young Adult
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 5884-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737630

ABSTRACT

Free flap surgery is a procedure where healthy tissue is transferred from a donor site to a recipient site of the body to fill a defect without maintaining the original blood supply to the flap. The anastomosis of the vascular network of the flap to the blood vessels adjacent to the recipient site has associated risks of arterial and/or venous occlusions that must be promptly detected to avoid temporary or permanent tissue damage. In this work, we present a skin-contact diffusion optical imaging (DOI) system able to continuously provide a three-dimensional representation of the flap oxygenation to promptly detect vascular occlusions potentially occurring in the flap. Multiple near-infrared LEDs and photodetectors were embedded into a self-contained optical sensor for prolonged monitoring of concentration changes of oxygenated (HbO) and deoxygenated hemoglobin (HbR) at multiple locations and depths. A time-efficient algorithm mapped measured oxygenation changes in a three-dimensional volume to allow surgeons and clinical personnel to detect and localize abnormal blood perfusion changes during or after surgery, in time for corrective intervention. The image reconstruction algorithm was validated using computerized flap models in which oxygenation was synthetically altered, whereas the optical system was preliminarily tested on a healthy forearm simulating a flap undergoing arterial and venous occlusions, proving the feasibility of implementing DOI in the form of a wearable patch for prolonged perfusion monitoring.


Subject(s)
Vascular Diseases , Forearm , Free Tissue Flaps , Humans , Optical Imaging , Skin
SELECTION OF CITATIONS
SEARCH DETAIL
...