Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Am Chem Soc ; 144(1): 63-68, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34965105

ABSTRACT

We report the synthesis of a 2-phosphinoimidazole-derived bimetallic Rh(II) complex that enables intramolecular allene hydroamination to form 7- to 10-member rings in high yield. Monometallic Rh complexes, in contrast, fail to achieve any product formation. We demonstrate a broad substrate scope for formation of various N-heterocycles. Macrocyclizations that form 11- to 15-member N-heterocycles are also demonstrated. Mechanistic studies suggest that the reaction proceeds via reversible allene insertion with a Rh-hydride followed by C-N bond-forming reductive elimination. We hypothesize that the reactivity observed with our catalyst vs monometallic Rh complexes is derived from the bimetallic nature of our complex.

3.
Org Lett ; 21(23): 9589-9593, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31765164

ABSTRACT

We report an unprecedented boron-templated dimerization of allylic alcohols that generates a 1,3-diol product with two stereogenic centers in high yield and diastereoselectivity. This acid-catalyzed reaction is achieved via in situ formation of a boronic ester intermediate that facilitates selective cyclization and formation of a cyclic boronic ester product. High yields are observed with a variety of allylic alcohols, and mechanistic studies confirm the role of boron as a template for the reaction.

4.
J Org Chem ; 83(17): 10646-10654, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30086629

ABSTRACT

Amination of allylic alcohols is facilitated via cooperative catalysis. Catalytic Ti(O- i-Pr)4 is shown to dramatically increase the rate of nickel-catalyzed allylic amination, and mechanistic experiments confirm activation of the allylic alcohol by titanium. Aminations of primary and secondary allylic alcohols are demonstrated with a variety of amine nucleophiles. Diene-containing substrates also cyclize onto the nickel allyl intermediate prior to amination, generating carbocyclic amine products. This tandem process is only achieved under our cooperative catalytic system.

SELECTION OF CITATIONS
SEARCH DETAIL
...