Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 64-65: 49-55, 2012 May.
Article in English | MEDLINE | ID: mdl-22386209

ABSTRACT

Boronic esters and acids are potential intermediates in the manufacture of many active pharmaceutical ingredients (API). Accurate quantitation of the intermediate is necessary to assure the stoichiometry of the reaction. The analysis of these compounds is challenging due to their labile nature. For example, the boronic ester can hydrolyze to the acid during storage, when exposed to moisture in the air, during sample preparation and analysis, and thus give erroneous ester results. Traditional analytical techniques like gas chromatography (GC), normal phase chromatography (NPLC), hydrophilic interaction chromatography (HILIC), and reversed phase liquid chromatography (RPLC) have been utilized but with noted limitations such as poor peak shape, variation in retention times, and evidence of hydrolysis. All of these limitations impact accurate quantitation needed for selected situations. For the proprietary boronic ester evaluated here, these traditional techniques were insufficient for the accurate determination of assay and residual boronic acid. Non-aqueous capillary electrophoresis (NACE) is an accurate quantitative technique that can be used to analyze boronic esters and their corresponding acids without the limitations noted for traditional analytical techniques. The present study describes the development of methodology for the determination of the potency of a proprietary boronic ester as well as methodology for the determination of residual boronic acid in the ester. In addition, nine model boronic ester and acid pairs with a range in polarity, based on the electronic properties of the attached side group, were tested to evaluate and demonstrate the general applicability of these conditions. Under the conditions used for potency, all ten pairs had a resolution between the boronic ester and acid of greater than 1.5, acceptable peak shape for the boronic ester (tailing factor of less than 2.0), and a run time of less than 3 min. In addition, this work describes the development of methodology to determine residual levels of boronic acids in the corresponding boronic ester. Using the ten boronic ester and acid pairs, eight of the ten pairs were shown to have acceptable sensitivity (S/N of 10 or better at 0.5%) and spike recoveries (within the range of 80-120%). The potential for hydrolysis during analysis was also addressed by using a subset of the ten boronic ester and acid pairs and spiking water into the diluent. There was no observed conversion of the ester to the acid. The lack of hydrolysis during analysis and the high success in separating and validating these methods for the boronic ester and acid pairs supports the utility of NACE as a technique for the analysis of boronic esters and acids.


Subject(s)
Boronic Acids/analysis , Electrophoresis, Capillary/methods , Boronic Acids/chemistry , Esters/analysis , Molecular Structure
2.
J Org Chem ; 70(12): 4695-705, 2005 Jun 10.
Article in English | MEDLINE | ID: mdl-15932307

ABSTRACT

The stereospecific synthesis of the PPAR alpha/gamma agonist 1 was accomplished via ethylation of the optically pure trihydroxy derivative 6, itself derived via an enzymatic resolution. The ethylation can be accomplished without epimerization only under strict control of the reaction conditions and the choice of base (sodium tert-amylate), temperature (-30 degrees C), order of addition, and solvent (DMF). The key diastereospecific SN2 reaction of the phenol 4 with S-2-chloropropionic acid is best achieved via the sodium phenoxide of 4 derived from Na0 as the reagent of choice. The structure elucidation and key purification protocols to achieve pharmaceutical purity will also be described.


Subject(s)
Combinatorial Chemistry Techniques , PPAR alpha/agonists , PPAR gamma/agonists , Propionates/chemical synthesis , Molecular Structure , Stereoisomerism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...