Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8013): 830-836, 2024 May.
Article in English | MEDLINE | ID: mdl-38720068

ABSTRACT

Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.


Subject(s)
Biodiversity , Climate Change , Communicable Diseases , Environmental Pollution , Introduced Species , Animals , Humans , Anthropogenic Effects , Climate Change/statistics & numerical data , Communicable Diseases/epidemiology , Communicable Diseases/etiology , Conservation of Natural Resources/trends , Datasets as Topic , Environmental Pollution/adverse effects , Forestry , Forests , Introduced Species/statistics & numerical data , Plant Diseases/etiology , Risk Assessment , Urbanization
2.
PLoS Biol ; 18(12): e3000987, 2020 12.
Article in English | MEDLINE | ID: mdl-33332354

ABSTRACT

The antimicrobial resistance crisis has persisted despite broad attempts at intervention. It has been proposed that an important driver of resistance is selection imposed on bacterial populations that are not the intended target of antimicrobial therapy. But to date, there has been limited quantitative measure of the mean and variance of resistance following antibiotic exposure. Here we focus on the important nosocomial pathogen Enterococcus faecium in a hospital system where resistance to daptomycin is evolving despite standard interventions. We hypothesized that the intravenous use of daptomycin generates off-target selection for resistance in transmissible gastrointestinal (carriage) populations of E. faecium. We performed a cohort study in which the daptomycin resistance of E. faecium isolated from rectal swabs from daptomycin-exposed patients was compared to a control group of patients exposed to linezolid, a drug with similar indications. In the daptomycin-exposed group, daptomycin resistance of E. faecium from the off-target population was on average 50% higher than resistance in the control group (n = 428 clones from 22 patients). There was also greater phenotypic diversity in daptomycin resistance within daptomycin-exposed patients. In patients where multiple samples over time were available, a wide variability in temporal dynamics were observed, from long-term maintenance of resistance to rapid return to sensitivity after daptomycin treatment stopped. Sequencing of isolates from a subset of patients supports the argument that selection occurs within patients. Our results demonstrate that off-target gastrointestinal populations rapidly respond to intravenous antibiotic exposure. Focusing on the off-target evolutionary dynamics may offer novel avenues to slow the spread of antibiotic resistance.


Subject(s)
Daptomycin/pharmacology , Drug Resistance, Bacterial/drug effects , Vancomycin-Resistant Enterococci/drug effects , Adaptation, Physiological/drug effects , Adaptation, Physiological/physiology , Adult , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Enterococcus faecium/drug effects , Enterococcus faecium/metabolism , Female , Humans , Male , Microbial Sensitivity Tests , Phylogeny , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...