Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychiatr Res ; 145: 50-59, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34864489

ABSTRACT

BACKGROUND: GABAergic interneuron dysfunction has been implicated in the pathophysiology of schizophrenia. Expression of glutamic acid decarboxylase (GAD), a key enzyme in GABA synthesis, may also be altered. Here, we have simultaneously evaluated GAD-immunoreactive (GAD-ir) neuropil and cell profiles in schizophrenia-relevant brain regions, and analysed disease-course related differences. METHODS: GAD65/67 immunoreactivity was quantified in specific brain regions for profiles of fibres and cell bodies of interneurons by automated digital image analysis in post-mortem brains of 16 schizophrenia patients from paranoid (n = 10) and residual (n = 6) diagnostic subgroups and 16 matched controls. Regions of interest were superior temporal gyrus (STG) layers III and V, mediodorsal (MD) and laterodorsal (LD) thalamus, and hippocampal CA1 and dentate gyrus (DG) regions. RESULTS: A reduction in GAD-ir neuropil profiles (p < 0.001), particularly in STG layer V (p = 0.012) and MD (p = 0.001), paralleled decreased GAD-ir cell profiles (p = 0.029) in schizophrenia patients compared to controls. Paranoid schizophrenia patients had lower GAD-ir neuron cell profiles in STG layers III (p = 0.007) and V (p = 0.001), MD (p = 0.002), CA1 (p = 0.001) and DG (p = 0.043) than residual patients. There was no difference in GAD-ir neuropil profiles between paranoid and residual subgroups (p = 0.369). CONCLUSIONS: These results support the hypothesis of GABAergic dysfunction in schizophrenia. They show a more prominent reduction of GAD-ir interneurons in paranoid versus residual patients, suggestive of more pronounced GABAergic dysfunction in the former. Fully automated analyses of histological sections represent a step towards user-independent assessment of brain structure.

2.
Environ Pollut ; 257: 113594, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31753633

ABSTRACT

Soils in urban and industrial areas, especially in larger metropolitan areas such as the Ruhr area, Germany, are commonly characterized by severe anthropogenic overprinting due to urbanization processes including land development measures. Such urban soils often contain various anthropogenic substrate admixtures, like ash, coal, tailings, building rubble, industrial waste materials, as well as urban dust, soot, fly ash, and others. These admixtures often carry higher contents of pollutants such as polycyclic aromatic hydrocarbons (PAH). Whereas elevated PAH concentrations are commonly attributed to non-point pyrogenic carbon sources like soot and particulate matter, petrogenic PAH sources are still largely neglected in this context. In this study, an extended sample set of 62 samples of PAH source materials and urban soils containing anthropogenic substrate components was investigated by combining extended PAH analysis of 59 PAH, alkylated PAH distributions and benzene polycarboxylic acid (BPCA) analysis with regard to petrogenic and pyrogenic PAH source identification. For more reliability of source apportionment by a more integrative signal, the alkylated PAH distributions of different PAH groups were combined according to their degrees of alkylation. Based on this combination, a new PAH alkylation index (ΣC0/(ΣC0+ΣC2)) was derived, which considers, in contrast to commonly used single PAH ratios, a series of non-alkylated and alkylated PAH. By comparison of this PAH alkylation index with the degree of aromatic condensation a new robust and economic method for identifying petrogenic, pyrogenic and mixed PAH sources within soil samples and sediments was developed. It is shown that coal and coal ash particles are a not negligible PAH source in urban soils of mining-dominated regions and can make up a large proportion of the anthropogenic substrate components encountered. Further analyses of samples with defined levels of petrogenic and pyrogenic PAH are necessary to finally evaluate the usefulness of this proposed new PAH-BPCA approach.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/chemistry , Benzene/analysis , Carbon/analysis , Carboxylic Acids/analysis , Coal/analysis , Dust/analysis , Germany , Reproducibility of Results , Soot/analysis , Urbanization
3.
Ethology ; 120(8): 768-775, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25400307

ABSTRACT

During foraging, ant workers are known to make use of multiple information sources, such as private information (personal memory) and social information (trail pheromones). Environmental effects on foraging, and how these interact with other information sources, have, however, been little studied. One environmental effect is trail bifurcation asymmetry. Ants forage on branching trail networks and must often decide which branch to take at a junction (bifurcation). This is an important decision, as finding food sources relies on making the correct choices at bifurcations. Bifurcation angle may provide important information when making this choice. We used a Y-maze with a pivoting 90° bifurcation to study trail choice of Lasius niger foragers at varying branch asymmetries (0°, [both branches 45° from straight ahead], 30° [branches at 30° and 60° from straight ahead], 45°, 60° and 90° [one branch straight ahead, the other at 90°]). The experiment was carried out either with equal amounts of trail pheromone on both branches of the bifurcation or with pheromone present on only one branch. Our results show that with equal pheromone, trail asymmetry has a significant effect on trail choice. Ants preferentially follow the branch deviating least from straight, and this effect increases as asymmetry increases (47% at 0°, 54% at 30°, 57% at 45°, 66% at 60° and 73% at 90°). However, when pheromone is only present on one branch, the graded effect of asymmetry disappears. Overall, however, there is an effect of asymmetry as the preference of ants for the pheromone-marked branch over the unmarked branch is reduced from 65%, when it is the less deviating branch, to 53%, when it is the more deviating branch. These results demonstrate that trail asymmetry influences ant decision-making at bifurcations and that this information interacts with trail pheromone presence in a non-hierarchical manner.

4.
Clin Neuropsychol ; 6(2): 201-229, 1992 Apr.
Article in English | MEDLINE | ID: mdl-29022443

ABSTRACT

This article reviews data gathered from samples of normal children who were assessed with the Halstead-Reitan Neuropsychological Test Battery for Older Children (HRB-OC), ages 9-14 years. Graphic comparisons by age group indicate clear developmental trends for all measures except TPT-memory, TPT-localization, and Seashore Rhythm Test. Methods used to analyze variability of the measures suggested that the following may be unreliable: Tactual Performance Test, all timed measures, memory and localization tasks; Trail Making Test, Part B among younger children; Speech-Sounds Perception Test; and Seashore Rhythm Test. These results are consistent with published reliability data from a study of referred children. The HRB-OC remains a powerful tool when combined with multiple methods of assessment and clinical expertise.

SELECTION OF CITATIONS
SEARCH DETAIL
...