Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 213(2): 273-90, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26834157

ABSTRACT

JAK2V617F(+) myeloproliferative neoplasms (MPNs) frequently progress into leukemias, but the factors driving this process are not understood. Here, we find excess Hedgehog (HH) ligand secretion and loss of PTCH2 in myeloproliferative disease, which drives canonical and noncanonical HH-signaling. Interestingly, Ptch2(-/-) mice mimic dual pathway activation and develop a MPN-phenotype with leukocytosis (neutrophils and monocytes), strong progenitor and LKS mobilization, splenomegaly, anemia, and loss of lymphoid lineages. HSCs exhibit increased cell cycling with improved stress hematopoiesis after 5-FU treatment, and this results in HSC exhaustion over time. Cytopenias, LKS loss, and mobilization are all caused by loss of Ptch2 in the niche, whereas hematopoietic loss of Ptch2 drives leukocytosis and promotes LKS maintenance and replating capacity in vitro. Ptch2(-/-) niche cells show hyperactive noncanonical HH signaling, resulting in reduced production of essential HSC regulators (Scf, Cxcl12, and Jag1) and depletion of osteoblasts. Interestingly, Ptch2 loss in either the niche or in hematopoietic cells dramatically accelerated human JAK2V617F-driven pathogenesis, causing transformation of nonlethal chronic MPNs into aggressive lethal leukemias with >30% blasts in the peripheral blood. Our findings suggest HH ligand inhibitors as possible drug candidates that act on hematopoiesis and the niche to prevent transformation of MPNs into leukemias.


Subject(s)
Myeloproliferative Disorders/etiology , Receptors, Cell Surface/deficiency , Animals , Disease Progression , Hedgehog Proteins/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukemia/etiology , Leukemia/genetics , Leukemia/metabolism , Ligands , Lymphopenia/etiology , Mice , Mice, Knockout , Mice, Transgenic , Mutant Proteins/genetics , Mutant Proteins/metabolism , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Patched Receptors , Patched-2 Receptor , Phenotype , Polycythemia Vera/genetics , Polycythemia Vera/metabolism , Polycythemia Vera/pathology , Receptors, Cell Surface/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Stem Cell Niche
2.
Cancer Res ; 70(15): 6193-204, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20670954

ABSTRACT

Peripheral T-cell lymphomas (PTCL) constitute a major treatment problem with high mortality rates due to the minimal effectiveness of conventional chemotherapy. Recent findings identified ITK-SYK as the first recurrent translocation in 17% of unspecified PTCLs and showed the overexpression of SYK in more than 90% of PTCLs. Here, we show that the expression of ITK-SYK in the bone marrow of BALB/c mice causes a T-cell lymphoproliferative disease in all transplanted mice within 8 weeks after transplantation. The disease was characterized by the infiltration of spleen, lymph nodes, bone marrow, and skin with CD3+CD4+CD8- and CD3+CD4-CD8- ITK-SYK-positive T-cells accompanied by a systemic inflammatory reaction with upregulation of interleukin 5 and INF-gamma. ITK-SYK-positive T-cells showed enhanced apoptosis resistance and INF-gamma production in vitro. The disease was serially transplantable, inducing clonal T-cell expansion in secondary recipients. The action of ITK-SYK in vivo was dependent on SYK kinase activity and disease development could be inhibited by the treatment of mice with SYK inhibitors. Interestingly, the translocation of ITK-SYK from the membrane to the cytoplasm, using a point mutation in the pleckstrin homology domain (ITK-SYK R29C), did not abolish, but rather, enhanced disease development in transplanted mice. CBL binding was strongly enhanced in membrane-associated ITK-SYK E42K and was causative for delayed disease development. Our results show that ITK-SYK causes a T-cell lymphoproliferative disease in mice, supporting its role in T-cell lymphoma development in humans. Therefore, pharmacologic inhibition of SYK in patients with U-PTCLs carrying the ITK-SYK fusion protein might be an effective treatment strategy.


Subject(s)
Intracellular Signaling Peptides and Proteins/immunology , Lymphoma, T-Cell/immunology , Lymphoproliferative Disorders/immunology , Oncogene Proteins, Fusion/immunology , Protein-Tyrosine Kinases/immunology , Animals , B-Lymphocytes/immunology , Bone Marrow Transplantation , Disease Models, Animal , Female , Humans , Immunophenotyping , Intracellular Signaling Peptides and Proteins/genetics , Lymphocyte Activation , Lymphoma, T-Cell/enzymology , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/pathology , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/pathology , Male , Mice , Mice, Inbred BALB C , Oncogene Proteins, Fusion/biosynthesis , Oncogene Proteins, Fusion/genetics , Point Mutation , Protein-Tyrosine Kinases/biosynthesis , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Syk Kinase , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...