Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 185(24): 4526-4540.e18, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36347253

ABSTRACT

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.


Subject(s)
Ergothioneine , Humans , Ergothioneine/metabolism , Antioxidants/metabolism , Oxidation-Reduction , Sulfhydryl Compounds , Molecular Weight
2.
ACS Chem Biol ; 17(11): 3086-3099, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36279369

ABSTRACT

Clostridioides difficile is a Gram-positive anaerobic bacterium that is the leading cause of hospital-acquired gastroenteritis in the US. In the gut milieu, C. difficile encounters microbiota-derived, growth-inhibiting bile acids that are thought to be a significant mechanism of colonization resistance. While the levels of certain bile acids in the gut correlate with susceptibility to C. difficile infection, their molecular targets in C. difficile remain unknown. In this study, we sought to use chemical proteomics to identify bile acid-interacting proteins in C. difficile. Using photoaffinity bile acid probes and chemical proteomics, we identified a previously uncharacterized MerR family protein, CD3583 (now BapR), as a putative bile acid-sensing transcription regulator. Our data indicate that BapR specifically binds to and is stabilized by lithocholic acid (LCA) in C. difficile. Although loss of BapR did not affect C. difficile's sensitivity to LCA, ΔbapR cells elongated more in the presence of LCA compared to wild-type cells. Transcriptomics revealed that BapR regulates several gene clusters, with the expression of the mdeA-cd3573 locus being specifically de-repressed in the presence of LCA in a BapR-dependent manner. Electrophoretic mobility shift assays revealed that BapR directly binds to the mdeA promoter region. Because mdeA is involved in amino acid-related sulfur metabolism and the mdeA-cd3573 locus encodes putative transporters, we propose that BapR senses a gastrointestinal tract-specific small molecule, LCA, as an environmental cue for metabolic adaptation.


Subject(s)
Clostridioides difficile , Clostridioides , Transcription Factors/genetics , Proteomics , Base Composition , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Bile Acids and Salts
3.
Biochem J ; 477(8): 1459-1478, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32242623

ABSTRACT

Clostridioides difficile is a spore-forming bacterial pathogen that is the leading cause of hospital-acquired gastroenteritis. C. difficile infections begin when its spore form germinates in the gut upon sensing bile acids. These germinants induce a proteolytic signaling cascade controlled by three members of the subtilisin-like serine protease family, CspA, CspB, and CspC. Notably, even though CspC and CspA are both pseudoproteases, they are nevertheless required to sense germinants and activate the protease, CspB. Thus, CspC and CspA are part of a growing list of pseudoenzymes that play important roles in regulating cellular processes. However, despite their importance, the structural properties of pseudoenzymes that allow them to function as regulators remain poorly understood. Our recently solved crystal structure of CspC revealed that its pseudoactive site residues align closely with the catalytic triad of CspB, suggesting that it might be possible to 'resurrect' the ancestral protease activity of the CspC and CspA pseudoproteases. Here, we demonstrate that restoring the catalytic triad to these pseudoproteases fails to resurrect their protease activity. We further show that the pseudoactive site substitutions differentially affect the stability and function of the CspC and CspA pseudoproteases: the substitutions destabilized CspC and impaired spore germination without affecting CspA stability or function. Thus, our results surprisingly reveal that the presence of a catalytic triad does not necessarily predict protease activity. Since homologs of C. difficile CspA occasionally carry an intact catalytic triad, our results indicate that bioinformatic predictions of enzyme activity may underestimate pseudoenzymes in rare cases.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Clostridioides difficile/enzymology , Spores, Bacterial/growth & development , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Catalysis , Clostridioides difficile/chemistry , Clostridioides difficile/genetics , Clostridioides difficile/growth & development , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Developmental , Spores, Bacterial/enzymology , Spores, Bacterial/genetics
4.
ACS Chem Biol ; 15(5): 1141-1147, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32091869

ABSTRACT

The discovery of specific microbiota metabolite mechanisms has begun to motivate new therapeutic approaches. Inspired by our mechanistic studies of microbiota-derived short chain fatty acid (SCFA) acylation of bacterial virulence factors, here we explored covalent protein acylation therapeutics as potential anti-infectives. For these studies, we focused on acetyl-salicylic acid, aspirin, and discovered that SCFA analogues such as butyryl-salicylic acid showed significantly improved anti-infective activity against Salmonella Typhimurium. Structure-activity studies showed that the ester functionality of butyryl-salicylic acid was crucial and associated with the acylation of key bacterial virulence factors and metabolic enzymes, which are important for Salmonella infection of host cells and bacterial growth. Beyond the Gram-negative bacterial pathogens, butyryl-salicylic acid also showed better antibacterial activity compared to aspirin against Clostridioides difficile, a clinically challenging Gram-positive bacterial pathogen. Notably, coadministration of butyryl-salicylic acid, but not aspirin, effectively attenuated Salmonella pathogenesis in vivo. This study highlights how the analysis of microbiota metabolite mechanisms may inspire the repurposing and development of new anti-infective agents.


Subject(s)
Anti-Infective Agents/chemistry , Fatty Acids, Volatile/chemistry , Microbiota/physiology , Salicylic Acid/chemistry , Acylation , Anti-Infective Agents/pharmacology , Aspirin/chemistry , Aspirin/pharmacology , Clostridioides difficile/drug effects , Drug Therapy, Combination , Esters/chemistry , Fatty Acids, Volatile/pharmacology , Humans , Salicylic Acid/pharmacology , Salmonella typhimurium/drug effects , Structure-Activity Relationship
5.
PLoS Genet ; 15(7): e1008224, 2019 07.
Article in English | MEDLINE | ID: mdl-31276487

ABSTRACT

The gastrointestinal pathogen, Clostridioides difficile, initiates infection when its metabolically dormant spore form germinates in the mammalian gut. While most spore-forming bacteria use transmembrane germinant receptors to sense nutrient germinants, C. difficile is thought to use the soluble pseudoprotease, CspC, to detect bile acid germinants. To gain insight into CspC's unique mechanism of action, we solved its crystal structure. Guided by this structure, we identified CspC mutations that confer either hypo- or hyper-sensitivity to bile acid germinant. Surprisingly, hyper-sensitive CspC variants exhibited bile acid-independent germination as well as increased sensitivity to amino acid and/or calcium co-germinants. Since mutations in specific residues altered CspC's responsiveness to these different signals, CspC plays a critical role in regulating C. difficile spore germination in response to multiple environmental signals. Taken together, these studies implicate CspC as being intimately involved in the detection of distinct classes of co-germinants in addition to bile acids and thus raises the possibility that CspC functions as a signaling node rather than a ligand-binding receptor.


Subject(s)
Bacterial Proteins/metabolism , Bile Acids and Salts/pharmacology , Carrier Proteins/metabolism , Clostridioides difficile/physiology , Spores, Bacterial/growth & development , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Crystallography, X-Ray , Gene Expression Regulation, Bacterial/drug effects , Models, Molecular , Mutation , Protein Conformation , Stress, Physiological
6.
PLoS Pathog ; 12(11): e1006001, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27806131

ABSTRACT

Obstacles to bacterial survival and replication in the cytosol of host cells, and the mechanisms used by bacterial pathogens to adapt to this niche are not well understood. Listeria monocytogenes is a well-studied Gram-positive foodborne pathogen that has evolved to invade and replicate within the host cell cytosol; yet the mechanisms by which it senses and responds to stress to survive in the cytosol are largely unknown. To assess the role of the L. monocytogenes penicillin-binding-protein and serine/threonine associated (PASTA) kinase PrkA in stress responses, cytosolic survival and virulence, we constructed a ΔprkA deletion mutant. PrkA was required for resistance to cell wall stress, growth on cytosolic carbon sources, intracellular replication, cytosolic survival, inflammasome avoidance and ultimately virulence in a murine model of Listeriosis. In Bacillus subtilis and Mycobacterium tuberculosis, homologues of PrkA phosphorylate a highly conserved protein of unknown function, YvcK. We found that, similar to PrkA, YvcK is also required for cell wall stress responses, metabolism of glycerol, cytosolic survival, inflammasome avoidance and virulence. We further demonstrate that similar to other organisms, YvcK is directly phosphorylated by PrkA, although the specific site(s) of phosphorylation are not highly conserved. Finally, analysis of phosphoablative and phosphomimetic mutants of YvcK in vitro and in vivo demonstrate that while phosphorylation of YvcK is irrelevant to metabolism and cell wall stress responses, surprisingly, a phosphomimetic, nonreversible negative charge of YvcK is detrimental to cytosolic survival and virulence in vivo. Taken together our data identify two novel virulence factors essential for cytosolic survival and virulence of L. monocytogenes. Furthermore, our data demonstrate that regulation of YvcK phosphorylation is tightly controlled and is critical for virulence. Finally, our data suggest that yet to be identified substrates of PrkA are essential for cytosolic survival and virulence of L. monocytogenes and illustrate the importance of studying protein phosphorylation in the context of infection.


Subject(s)
Cell Wall/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Homeostasis/physiology , Listeria monocytogenes/pathogenicity , Listeriosis/metabolism , Virulence Factors/metabolism , Virulence/physiology , Animals , Blotting, Western , Disease Models, Animal , Mass Spectrometry , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...